AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures

AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构

基本信息

  • 批准号:
    1733798
  • 负责人:
  • 金额:
    $ 27.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2020-10-31
  • 项目状态:
    已结题

项目摘要

The interiors of ventricles of a human heart are spanned by a fine net of muscle fibers that are difficult to resolve, even in high resolution CT images. An accurate account of these structures, however, could improve diagnosis of cardiac disease, evaluation of cardiac function, assessment of stroke risk, and simulation of cardiac blood flow. Topology is the branch of abstract mathematics that deals with connections; this project uses the theory of persistent homology to identify crucial topological handles that can be useful for accurate reconstruction and analysis of the complex cardiac dynamics from these CT images. The outcome of the project will not only advance our understanding of cardiac function, but also generate novel computational topology methods that are more efficient and effective for practical applications. This project not only bridges the gap between the theory of computational topology and the practical problem of cardiac image analysis, but also trains the next generation of researchers and educators to do so by a carefully integrated education plan. The PIs will engage undergraduate students, high school students, women and other underrepresented students in their proposed research.The goal of this project is to develop a topological approach to unveil the intrinsic structures from complex and dynamic 3D/4D cardiac data, and furthermore, to provide principled tools to quantitatively analyze these structures. The PIs will create new computational topology methodologies and algorithms to extract rich information from the intrinsic structure of cardiac data. They will develop novel methodologies to extract localized topological features and to track them based on their spatial and temporal coherence. They also plan to design new algorithms to untangle ambiguous and uncertain situations for tracking structures through time sequence data. The resulting techniques and software will be validated on cardiac CT data to produce quantitative assessments of accuracy and to characterize the advantages and limitations of these approaches. Domain experts will validate the quality of the approaches via scientific hypotheses and data exploration. The methods to be developed are general and will impact other scientific fields where intrinsic complex and dynamic structures exist.
即使在高分辨率的CT图像中,也难以解决的肌肉纤维的细网跨越了人心脏的内部。 然而,对这些结构的准确说明可以改善心脏病的诊断,心脏功能的评估,中风风险评估以及对心脏血流的模拟。拓扑是处理连接的抽象数学分支。该项目使用持久同源性理论来识别至关重要的拓扑处理,这对于精确重建和分析了这些CT图像的复杂心脏动力学。该项目的结果不仅会提高我们对心脏功能的理解,而且还会产生新颖的计算拓扑方法,这些方法对实际应用更有效,有效。该项目不仅弥合了计算拓扑理论与心脏图像分析的实际问题之间的鸿沟,而且还培训了下一代研究人员和教育工作者,通过精心整合的教育计划来做到这一点。 PI将参与本科生,高中生,妇女和其他代表性不足的学生参与其拟议的研究。该项目的目的是开发一种拓扑方法,以揭示从复杂而动态的3D/4D心脏数据的内在结构,以及提供定量分析这些结构的原始工具。 PI将创建新的计算拓扑方法和算法,以从心脏数据的内在结构中提取丰富的信息。他们将开发出新的方法来提取局部拓扑特征,并根据它们的空间和时间连贯性跟踪它们。他们还计划设计新的算法,以使歧义和不确定的情况毫无障碍,以通过时间序列数据跟踪结构。最终的技术和软件将在心脏CT数据上进行验证,以产生准确性的定量评估,并表征这些方法的优势和局限性。领域专家将通过科学假设和数据探索来验证方法的质量。要开发的方法是一般的,将影响存在内在复杂和动态结构的其他科学领域。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topology-Aware Segmentation Using Discrete Morse Theory
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoling Hu;Yusu Wang;Fuxin Li;D. Samaras;Chao Chen
  • 通讯作者:
    Xiaoling Hu;Yusu Wang;Fuxin Li;D. Samaras;Chao Chen
Efficient Algorithms for Computing a Minimal Homology Basis
  • DOI:
    10.1007/978-3-319-77404-6_28
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dey, Tamal K.;Li, Tianqi;Wang, Yusu
  • 通讯作者:
    Wang, Yusu
Persistence Enhanced Graph Neural Network
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qi Zhao;Ze Ye;Chao Chen;Yusu Wang
  • 通讯作者:
    Qi Zhao;Ze Ye;Chao Chen;Yusu Wang
Heuristic Search for Homology Localization Problem and Its Application in Cardiac Trabeculae Reconstruction
同源定位问题的启发式搜索及其在心脏小梁重建中的应用
A Topological Regularizer for Classifiers via Persistent Homology
  • DOI:
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chao Chen;Xiuyan Ni;Qinxun Bai;Yusu Wang
  • 通讯作者:
    Chao Chen;Xiuyan Ni;Qinxun Bai;Yusu Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yusu Wang其他文献

Measuring Distance between Reeb Graphs
测量 Reeb 图之间的距离
Annotating Simplices with a Homology Basis and Its Applications
Shape fitting with outliers
与异常值进行形状拟合
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sariel Har;Yusu Wang
  • 通讯作者:
    Yusu Wang
Local Versus Global Distances for Zigzag and Multi-Parameter Persistence Modules
Zigzag 和多参数持久性模块的本地距离与全局距离
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellen Gasparovic;Maria Gommel;Emilie Purvine;R. Sazdanovic;Bei Wang;Yusu Wang;Lori Ziegelmeier
  • 通讯作者:
    Lori Ziegelmeier
Reeb Graphs: Approximation and Persistence
Reeb 图:近似和持久性

Yusu Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yusu Wang', 18)}}的其他基金

Collaborative Research: AF: Small: Graph Analysis: Integrating Metric and Topological Perspectives
合作研究:AF:小:图分析:整合度量和拓扑视角
  • 批准号:
    2310411
  • 财政年份:
    2023
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AI Institute for Learning-Enabled Optimization at Scale (TILOS)
AI 大规模学习优化研究所 (TILOS)
  • 批准号:
    2112665
  • 财政年份:
    2021
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Cooperative Agreement
AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    2039794
  • 财政年份:
    2020
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
  • 批准号:
    1940125
  • 财政年份:
    2019
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AF: Small: Collaborative Research:Geometric and topological algorithms for analyzing road network data
AF:小型:协作研究:用于分析道路网络数据的几何和拓扑算法
  • 批准号:
    1618247
  • 财政年份:
    2016
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AF: Small: Analyzing Complex Data with a Topological Lens
AF:小:用拓扑透镜分析复杂数据
  • 批准号:
    1526513
  • 财政年份:
    2015
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AF: Small: Approximation Algorithms and Topological Graph Theory
AF:小:近似算法和拓扑图论
  • 批准号:
    1423230
  • 财政年份:
    2014
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AF: Small: Geometric Data Processing and Analysis via Light-weight Structures
AF:小型:通过轻量结构进行几何数据处理和分析
  • 批准号:
    1319406
  • 财政年份:
    2013
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AF: EAGER: Collaborative Research: Integration of Computational Geometry and Statistical Learning for Modern Data Analysis
AF:EAGER:协作研究:现代数据分析的计算几何与统计学习的集成
  • 批准号:
    1048983
  • 财政年份:
    2010
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AitF: Collaborative Research: Topological Algorithms for 3D/4D Cardiac Images: Understanding Complex and Dynamic Structures
AitF:协作研究:3D/4D 心脏图像的拓扑算法:理解复杂和动态结构
  • 批准号:
    2051197
  • 财政年份:
    2020
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    1940759
  • 财政年份:
    2019
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Fast, Accurate, and Practical: Adaptive Sublinear Algorithms for Scalable Visualization
AitF:协作研究:快速、准确和实用:用于可扩展可视化的自适应次线性算法
  • 批准号:
    2006206
  • 财政年份:
    2019
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AiTF: Collaborative Research: Distributed and Stochastic Algorithms for Active Matter: Theory and Practice
AiTF:协作研究:活跃物质的分布式随机算法:理论与实践
  • 批准号:
    1733812
  • 财政年份:
    2018
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: A Framework of Simultaneous Acceleration and Storage Reduction on Deep Neural Networks Using Structured Matrices
AitF:协作研究:使用结构化矩阵的深度神经网络同时加速和存储减少的框架
  • 批准号:
    1854742
  • 财政年份:
    2018
  • 资助金额:
    $ 27.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了