Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
基本信息
- 批准号:1940114
- 负责人:
- 金额:$ 38.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to model, predict, and improve the mechanical performance of engineering materials such as polymers, composites, and alloys can have a significant impact on manufacturing, with important economic and societal benefits. As advanced computational algorithms and data science approaches become available, they can be harnessed to disrupt the current approaches to materials modeling, and allow for the design and discovery of new high-strength, high-performance materials for manufacturing. Bringing together multidisciplinary teams of researchers can maximize the impact of these new tools and techniques. This Harnessing the Data Revolution Institutes for Data-Intensive Research in Science and Engineering (HDR-I-DIRSE) award supports the conceptualization of an Institute to develop novel data science methods, address fundamental scientific questions of Materials Engineering and Manufacturing, and build such multidisciplinary teams. The project will apply novel data science methods to advance the analysis of large sets of structural data of composite materials and alloys from the atomic scale to correlate with and predict mechanical properties. The methods are based on machine learning techniques and uncertainty quantification, and will help uncover underlying structural features in the materials that determine the properties and performance. The methods and results will help accelerate the development of ultra-high strength and lightweight carbon-based composites for aerospace applications, and multi-element superalloys for more durable engine parts, by navigating in the large possible design space and providing faster predictions than experiments and traditional simulation methods. The project will also lead to new methods and computational algorithms that will become publicly available. The investigators will train graduate and undergraduate students from various disciplines with a focus on engaging women and minorities in STEM fields, develop short courses that integrate novel Materials Science and Engineering applications and Data Science methods, and foster vertical integration of interdisciplinary research from undergraduate students to senior scientists.This project aims at building an effective and interpretable learning framework for materials data across scales to solve a major challenge in current data-driven materials design. The combined Materials Science and Data Science approaches will synergistically contribute to the development and use of interpretable and physics-informed data science methodologies to gain new understanding of mechanical properties of polymer composites and alloys, with the potential to be expanded into different property sets and different systems. The PIs will utilize available data efficiently through combination with physical rules and prior knowledge, to develop an interpretable augmented intelligent system to learn principles behind the association of input structures with material properties with uncertainty quantification. The interconnected tasks involve the (1) collection and curation of large amounts of computational and experimental data for polymer/carbon nanotube composites and alloys from open data sources and targeted calculations and experiments, (2) the development of geometric and topological methods incorporating physical principles to generate a better, more sensitive low-dimensional representation of the multidimensional data and characterize the parameter space related to mechanical properties, (3) the development of a Bayesian deep reinforcement learning framework to generate interpretable knowledge graphs that depict the relational knowledge among physical quantities with uncertainty quantification, and (4) the prediction of mechanical properties to reveal design principles to improve materials performance, evaluate and validate the methods, and develop software for dissemination. This project is part of the National Science Foundation's Harnessing the Data Revolution (HDR) Big Idea activity and is co-funded by the Division of Civil, Mechanical and Manufacturing Innovation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建模、预测和改进工程材料(如聚合物、复合材料和合金)机械性能的能力可以对制造业产生重大影响,具有重要的经济和社会效益。随着先进的计算算法和数据科学方法的出现,它们可以被用来颠覆当前的材料建模方法,并允许设计和发现用于制造的新型高强度、高性能材料。汇集多学科研究团队可以最大限度地发挥这些新工具和技术的影响。这项利用数据革命的科学和工程数据密集型研究机构(HDR-I-DIRSE)奖支持一个机构的概念化,以开发新的数据科学方法,解决材料工程和制造的基本科学问题,并建立这样的多学科团队。该项目将应用新颖的数据科学方法,从原子尺度推进复合材料和合金的大量结构数据的分析,以关联和预测机械性能。这些方法基于机器学习技术和不确定性量化,将有助于揭示材料中决定性能和性能的潜在结构特征。这些方法和结果将有助于加速航空航天应用的超高强度和轻质碳基复合材料的开发,以及用于更耐用发动机部件的多元素高温合金的开发,通过在可能的大设计空间中导航,并提供比实验和传统模拟方法更快的预测。该项目还将带来新的方法和计算算法,这些方法和算法将公开可用。研究人员将培训来自不同学科的研究生和本科生,重点是让女性和少数族裔参与STEM领域,开发整合新型材料科学与工程应用和数据科学方法的短期课程,并促进从本科生到高级科学家的跨学科研究的垂直整合。该项目旨在建立一个有效的、可解释的跨尺度材料数据学习框架,以解决当前数据驱动材料设计的主要挑战。材料科学和数据科学相结合的方法将协同促进可解释和物理信息数据科学方法的开发和使用,以获得对聚合物复合材料和合金机械性能的新理解,并有可能扩展到不同的性能集和不同的系统。pi将通过结合物理规则和先验知识有效地利用可用数据,开发可解释的增强智能系统,以学习输入结构与材料属性之间关联的原理,并进行不确定性量化。相互关联的任务包括:(1)从开放数据源和有针对性的计算和实验中收集和管理大量聚合物/碳纳米管复合材料和合金的计算和实验数据;(2)发展结合物理原理的几何和拓扑方法,以生成更好、更敏感的多维数据的低维表示,并表征与力学性能相关的参数空间;(3)开发贝叶斯深度强化学习框架,生成可解释的知识图,以不确定性量化描述物理量之间的关系知识;(4)力学性能预测,揭示设计原则,以提高材料性能,评估和验证方法,并开发用于传播的软件。该项目是美国国家科学基金会“利用数据革命(HDR)大创意”活动的一部分,由民用、机械和制造创新部共同资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Composition design of high-entropy alloys with deep sets learning
- DOI:10.1038/s41524-022-00779-7
- 发表时间:2022-04
- 期刊:
- 影响因子:9.7
- 作者:J. Zhang;Chen Cai;George Kim;Yusu Wang;Wei Chen
- 通讯作者:J. Zhang;Chen Cai;George Kim;Yusu Wang;Wei Chen
First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation
- DOI:10.1016/j.actamat.2019.09.026
- 发表时间:2019-12-01
- 期刊:
- 影响因子:9.4
- 作者:Kim, George;Diao, Haoyan;Chen, Wei
- 通讯作者:Chen, Wei
Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy
- DOI:10.1126/sciadv.aaz4748
- 发表时间:2020-09-01
- 期刊:
- 影响因子:13.6
- 作者:Lee, Chanho;Kim, George;Liaw, Peter K.
- 通讯作者:Liaw, Peter K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Chen其他文献
Nb-doped layered FeNi phosphide nanosheets for highly efficient overall water splitting under high current densities
掺铌层状 FeNi 磷化物纳米片可在高电流密度下实现高效的整体水分解
- DOI:
10.1039/d1ta00372k - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Shuting Wen;Guangliang Chen;Wei Chen;Xianhui Zhang - 通讯作者:
Xianhui Zhang
Research on the Complexity of Information System Development
信息系统开发复杂性研究
- DOI:
10.2991/meici-15.2015.208 - 发表时间:
2015 - 期刊:
- 影响因子:0.9
- 作者:
Wei Chen;Yan Zhang - 通讯作者:
Yan Zhang
A real-time multi-constraints obstacle avoidance method based on LiDAR
一种基于LiDAR的实时多约束避障方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Wei Chen;Jian Sun;Weishuo Li;Dapeng Zhao - 通讯作者:
Dapeng Zhao
Anionic Ln–MOF with tunable emission for heavy metal ion capture and l-cysteine sensing in serum
具有可调谐发射功能的阴离子 Ln−MOF,用于血清中的重金属离子捕获和 L-半胱氨酸传感
- DOI:
10.1039/c9ta13932j - 发表时间:
2020-03 - 期刊:
- 影响因子:11.9
- 作者:
Tiancheng Sun;Ruiqing Fan;Rui Xiao;Tingfeng Xing;Mingyue Qin;Yaqi Liu;Sue Hao;Wei Chen;Yulin Yang - 通讯作者:
Yulin Yang
Ingenious introduction of aminopropylimidazole to tune the hydrophobic selectivity of dodecyl-bonded stationary phase for environmental organic pollutants
巧妙引入氨基丙基咪唑来调节十二烷基键合固定相对环境有机污染物的疏水选择性
- DOI:
10.1016/j.microc.2022.107933 - 发表时间:
2022-09 - 期刊:
- 影响因子:4.8
- 作者:
Yan Wu;Panpan Cao;Yanhao Jiang;Yanjuan Liu;Yuefei Zhang;Wei Chen;Zhengwu Bai;Sheng Tang - 通讯作者:
Sheng Tang
Wei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Chen', 18)}}的其他基金
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 38.79万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: SSMCDAT2023: Data-driven Predictive Understanding of Oxidation Resistance in High-Entropy Alloy Nanoparticles
合作研究:EAGER:SSMCDAT2023:数据驱动的高熵合金纳米颗粒抗氧化性预测理解
- 批准号:
2334385 - 财政年份:2023
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
BRITE Fellow: AI-Enabled Discovery and Design of Programmable Material Systems
BRITE 研究员:人工智能支持的可编程材料系统的发现和设计
- 批准号:
2227641 - 财政年份:2023
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2404816 - 财政年份:2023
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: Microscopic Mechanism of Surface Oxide Formation in Multi-Principal Element Alloys
合作研究:多主元合金表面氧化物形成的微观机制
- 批准号:
2219489 - 财政年份:2022
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
- 批准号:
2005661 - 财政年份:2020
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
1945380 - 财政年份:2020
- 资助金额:
$ 38.79万 - 项目类别:
Continuing Grant
Collaborative Research: Framework: Data: HDR: Nanocomposites to Metamaterials: A Knowledge Graph Framework
合作研究:框架:数据:HDR:纳米复合材料到超材料:知识图框架
- 批准号:
1835782 - 财政年份:2018
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
RUI: Poly (vinyl alcohol) Thin Film Dewetting by Controlled Directional Drying
RUI:通过受控定向干燥进行聚(乙烯醇)薄膜去湿
- 批准号:
1807186 - 财政年份:2018
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: Concurrent Design of Quasi-Random Nanostructured Material Systems (NMS) and Nanofabrication Processes using Spectral Density Function
合作研究:使用谱密度函数并行设计准随机纳米结构材料系统(NMS)和纳米制造工艺
- 批准号:
1662435 - 财政年份:2017
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2404816 - 财政年份:2023
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: Project AIM-NEXT: All Included in Mathematics New Extensions
合作研究:AIM-NEXT 项目:全部包含在数学新扩展中
- 批准号:
2200371 - 财政年份:2022
- 资助金额:
$ 38.79万 - 项目类别:
Continuing Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
- 批准号:
2015375 - 财政年份:2020
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: AIM & ICERM Research Experiences for Undergraduate Faculty (REUF)
合作研究:AIM
- 批准号:
2015462 - 财政年份:2020
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
2039794 - 财政年份:2020
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940107 - 财政年份:2019
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940203 - 财政年份:2019
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940335 - 财政年份:2019
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative Research: I-AIM: Interpretable Augmented Intelligence for Multiscale Material Discovery
合作研究:I-AIM:用于多尺度材料发现的可解释增强智能
- 批准号:
1940125 - 财政年份:2019
- 资助金额:
$ 38.79万 - 项目类别:
Standard Grant
Collaborative: AIM & ICERM Research Experiences for Undergraduate Faculty Workshops
合作:AIM
- 批准号:
1620080 - 财政年份:2016
- 资助金额:
$ 38.79万 - 项目类别:
Continuing Grant