Stochastic Covering Under Noisy Outcomes
噪声结果下的随机覆盖
基本信息
- 批准号:1940766
- 负责人:
- 金额:$ 37.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study efficient methods for classifying a system based on outcomes revealed through a series of tests. A common task in medical decision-making is to perform a sequence of diagnostic tests in order to determine an underlying condition as quickly as possible. Tests will reveal partial information about the underlying condition, but may also be subject to error. The goal is to optimize the sequence of tests to minimize cost and time to classification. Similar problems arise in fault detection of complex systems and in threat detection. Noisy or missing data is a major issue in these applications, which often renders traditional models inapplicable. These examples can be modeled as sequential decision trees, and this project will develop methods to study optimal sequential decision trees with noisy outcomes. The specific questions studied in this project are of interest to multiple research communities including operations research, industrial engineering, computer science and machine learning. The educational component of this project involves training graduate and undergraduate students for a career in research, enhancing the curriculum of graduate courses, and outreach programs to high school students designed to broaden participation in STEM. This project will study models and algorithms for stochastic covering problems in the presence of noisy outcomes. Classical models for these problems assume that random outcomes are observed without any noise. This project will consider new models that incorporate noise in the following ways. In the stochastic noise model, the outcomes of certain tests are uncertain with known probability distributions. The stochastic noise can be either non-persistent or persistent, depending on whether observing the same outcome repeatedly results in independent samples. In the adversarial noise model, each noisy outcome instantiates to a value that results in the worst-case objective. A central paradigm in this project is the optimal decision tree, where one needs to identify an unknown random hypothesis using an adaptive sequence of tests. Apart from the noisy optimal decision tree problem, this project will also study noisy versions of stochastic submodular-cover and sequential testing problems. The project will design algorithms with mathematically rigorous performance guarantees. It will also test the empirical performance of the resulting algorithms on synthetic as well as publicly available datasets.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目将研究根据一系列测试结果对系统进行分类的有效方法。医疗决策中的一项常见任务是执行一系列诊断测试,以便尽快确定潜在的疾病。 测试将揭示有关基础条件的部分信息,但也可能会出现错误。 我们的目标是优化测试的顺序,以最大限度地减少分类的成本和时间。 类似的问题出现在复杂系统的故障检测和威胁检测中。 噪声或丢失的数据是这些应用中的一个主要问题,这往往使传统的模型不适用。 这些例子可以被建模为序列决策树,本项目将开发方法来研究具有噪声结果的最优序列决策树。在这个项目中研究的具体问题是感兴趣的多个研究社区,包括运筹学,工业工程,计算机科学和机器学习。该项目的教育部分涉及培训研究生和本科生从事研究工作,加强研究生课程的课程设置,以及旨在扩大STEM参与的高中生外联方案。本项目将研究在噪声结果存在下的随机覆盖问题的模型和算法。这些问题的经典模型假设随机结果是在没有任何噪音的情况下观察到的。本项目将考虑以下列方式纳入噪声的新模型。在随机噪声模型中,某些测试的结果是不确定的,具有已知的概率分布。随机噪声可以是非持续性的,也可以是持续性的,这取决于重复观察相同的结果是否会产生独立的样本。在对抗性噪声模型中,每个噪声结果实例化为导致最坏情况目标的值。在这个项目中的一个中心范例是最优决策树,其中需要使用自适应测试序列来识别未知的随机假设。除了噪音最佳决策树问题,这个项目还将研究随机子模覆盖和顺序测试问题的噪音版本。该项目将设计具有严格数学性能保证的算法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Batched Dueling Bandits
批量决斗强盗
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Agarwal, Arpit;Ghuge, Rohan;Nagarajan, Viswanath
- 通讯作者:Nagarajan, Viswanath
Minimum Cost Adaptive Submodular Cover
最低成本自适应子模块覆盖
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Cui, Yubing;Nagarajan, Viswanath
- 通讯作者:Nagarajan, Viswanath
Stochastic makespan minimization in structured set systems
结构化集合系统中的随机完工时间最小化
- DOI:10.1007/s10107-021-01741-z
- 发表时间:2022
- 期刊:
- 影响因子:2.7
- 作者:Gupta, Anupam;Kumar, Amit;Nagarajan, Viswanath;Shen, Xiangkun
- 通讯作者:Shen, Xiangkun
The Power of Adaptivity for Stochastic Submodular Cover
随机子模覆盖的自适应能力
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ghuge, Rohan;Gupta, Anupam;Nagarajan, Viswanath
- 通讯作者:Nagarajan, Viswanath
Non-Adaptive Stochastic Score Classification and Explainable Halfspace Evaluation
- DOI:10.1007/978-3-031-06901-7_21
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:R. Ghuge;Anupam Gupta;V. Nagarajan
- 通讯作者:R. Ghuge;Anupam Gupta;V. Nagarajan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Viswanath Nagarajan其他文献
Approximation algorithms for inventory problems with submodular or routing costs
- DOI:
10.1007/s10107-016-0981-y - 发表时间:
2016-02-18 - 期刊:
- 影响因子:2.500
- 作者:
Viswanath Nagarajan;Cong Shi - 通讯作者:
Cong Shi
Lower Bound on the Greedy Approximation Ratio for Adaptive Submodular Cover
自适应子模覆盖贪婪逼近比的下界
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Blake Harris;Viswanath Nagarajan - 通讯作者:
Viswanath Nagarajan
Cluster Before You Hallucinate: Node-Capacitated Network Design and Energy Efficient Routing
在你产生幻觉之前集群:节点容量网络设计和节能路由
- DOI:
10.1137/20m1360645 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Ravishankar Krishnaswamy;Viswanath Nagarajan;K. Pruhs;Clifford Stein - 通讯作者:
Clifford Stein
Exact train pathing
- DOI:
10.1007/s10951-008-0056-x - 发表时间:
2008-08-01 - 期刊:
- 影响因子:1.800
- 作者:
Viswanath Nagarajan;Abhiram G. Ranade - 通讯作者:
Abhiram G. Ranade
Viswanath Nagarajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Viswanath Nagarajan', 18)}}的其他基金
Collaborative Research: PPoSS: Planning: Scaling Autonomous Vehicle Systems at the Edge: from On-Board Processing to Cloud Infrastructure
合作研究:PPoSS:规划:扩展边缘自主车辆系统:从车载处理到云基础设施
- 批准号:
2118234 - 财政年份:2021
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Combinatorial Optimization for Stochastic Inputs
合作研究:AF:小:随机输入的组合优化
- 批准号:
2006778 - 财政年份:2020
- 资助金额:
$ 37.09万 - 项目类别:
Standard Grant
CAREER: New Mathematical Programming Techniques in Approximation and Online Algorithms
职业:近似和在线算法中的新数学编程技术
- 批准号:
1750127 - 财政年份:2018
- 资助金额:
$ 37.09万 - 项目类别:
Continuing Grant
相似海外基金
Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
创新的电机技术,涵盖电桥和电角车辆架构,实现高效和可持续的电动汽车
- 批准号:
10061830 - 财政年份:2023
- 资助金额:
$ 37.09万 - 项目类别:
EU-Funded
Research on trace formulas for covering groups of reductive algebraic groups
还原代数群覆盖群的迹公式研究
- 批准号:
23K12951 - 财政年份:2023
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EM-TECH - Innovative e-motor technologies covering e-axles and e-corners vehicle architectures for high-efficient and sustainable e-mobility
EM-TECH - 创新电动马达技术,涵盖电动车轴和电动弯道车辆架构,实现高效和可持续的电动交通
- 批准号:
10064117 - 财政年份:2023
- 资助金额:
$ 37.09万 - 项目类别:
EU-Funded
Loewner Theory on Universal Covering Map and Hyperbolic Metric
关于通用覆盖图和双曲度量的 Loewner 理论
- 批准号:
23K03150 - 财政年份:2023
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Comprehensive and Scalable Self-Care Service Covering Health, Wellbeing, Safety and Independence to Support People Throughout their Ageing Journey
涵盖健康、福祉、安全和独立的全面且可扩展的自我护理服务,为人们的整个老龄化之旅提供支持
- 批准号:
10027373 - 财政年份:2022
- 资助金额:
$ 37.09万 - 项目类别:
Collaborative R&D
Combinatorial structures on packing, covering, and configulation on hypergraphs
超图上的打包、覆盖和配置的组合结构
- 批准号:
22K03398 - 财政年份:2022
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approximation algorithms and numerical experiments for covering vertices by long paths
长路径覆盖顶点的近似算法和数值实验
- 批准号:
573063-2022 - 财政年份:2022
- 资助金额:
$ 37.09万 - 项目类别:
University Undergraduate Student Research Awards
Construction of a therapeutic platform for pulmonary MAC disease through identification of the essential genes covering genetic diversity of clinical MAC strains
通过鉴定覆盖临床MAC菌株遗传多样性的必需基因,构建肺部MAC疾病的治疗平台
- 批准号:
22H03115 - 财政年份:2022
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of gas release triggers from fine bubbles stabilized by molecular covering
通过分子覆盖稳定的细小气泡构建气体释放触发器
- 批准号:
22K03915 - 财政年份:2022
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on algorithms for domination and covering of large-scale graphs
大规模图的支配与覆盖算法研究
- 批准号:
22K11898 - 财政年份:2022
- 资助金额:
$ 37.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




