EAGER: Learning Language in Simulation for Real Robot Interaction
EAGER:在模拟中学习语言以实现真实的机器人交互
基本信息
- 批准号:1940931
- 负责人:
- 金额:$ 21.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
While robots are rapidly becoming more capable and ubiquitous, theirutility is still severely limited by the inability of regular users tocustomize their behaviors. This EArly Grant for Exploratory Research (EAGER) will explore how examples of language, gaze, and other communications can be collected from avirtual interaction with a robot in order to learn how robots caninteract better with end users. Current robots' difficulty of use andinflexibility are major factors preventing them from being morebroadly available to populations that might benefit, such asaging-in-place seniors. One promising solution is to let users controland teach robots with natural language, an intuitive and comfortablemechanism. This has led to active research in the area of groundedlanguage acquisition: learning language that refers to and is informedby the physical world. Given the complexity of robotic systems, thereis growing interest in approaches that take advantage of the latest invirtual reality technology, which can lower the barrier of entry tothis research.This EAGER project develops infrastructure that will lay the necessarygroundwork for applying simulation-to-reality approaches to naturallanguage interactions with robots. This project aims to bootstraprobots' learning to understand language, using a combination of datacollected in a high-fidelity virtual reality environment withsimulated robots and real-world testing on physical robots. A personwill interact with simulated robots in virtual reality, and his or heractions and language will be recorded. By integrating with existingrobotics technology, this project will model the connection betweenthe language people use and the robot's perceptions and actions.Natural language descriptions of what is happening in simulation willbe obtained and used to train a joint model of language and simulatedpercepts as a way to learn grounded language. The effectiveness of theframework and algorithms will be measured on automaticprediction/generation tasks and transferability of learned models to areal, physical robot. This work will serve as a proof of concept forthe value of combining robotics simulation with human interaction, aswell as providing interested researchers with resources to bootstraptheir own work.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然机器人正在迅速变得越来越有能力和无处不在,但它们的实用性仍然受到普通用户无法定制其行为的严重限制。EARLY探索性研究资助(EAGER)将探索如何从与机器人的虚拟交互中收集语言,凝视和其他通信的例子,以了解机器人如何更好地与最终用户交互。目前机器人的使用困难和不灵活性是阻止它们更广泛地应用于可能受益的人群的主要因素,例如老年人。一个有希望的解决方案是让用户用自然语言控制和教授机器人,这是一种直观和舒适的机制。这导致了对跨语言习得领域的积极研究:学习涉及物理世界并由物理世界提供信息的语言。鉴于机器人系统的复杂性,人们对利用最新虚拟现实技术的方法越来越感兴趣,这可以降低进入这项研究的门槛。EAGER项目开发的基础设施将为将模拟到现实的方法应用于与机器人的自然语言交互奠定必要的基础。该项目旨在引导probots学习理解语言,使用高保真虚拟现实环境中收集的模拟机器人和物理机器人的真实世界测试相结合。一个人将在虚拟现实中与模拟机器人互动,他或她的动作和语言将被记录下来。通过与现有的机器人技术相结合,该项目将对人类使用的语言与机器人的感知和动作之间的联系进行建模。将获得对模拟中发生的事情的自然语言描述,并用于训练语言和模拟感知的联合模型,作为学习基础语言的一种方式。该框架和算法的有效性将在自动预测/生成任务和学习模型到真实物理机器人的可转移性上进行测量。这项工作将作为结合机器人模拟与人类互动的价值的概念证明,以及为感兴趣的研究人员提供资源来引导他们自己的工作。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Planning with Abstract Learned Models While Learning Transferable Subtasks
在学习可转移子任务的同时使用抽象学习模型进行规划
- DOI:10.1609/aaai.v34i06.6555
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Winder, John;Milani, Stephanie;Landen, Matthew;Oh, Erebus;Parr, Shane;Squire, Shawn;desJardins, Marie;Matuszek, Cynthia
- 通讯作者:Matuszek, Cynthia
Jointly Identifying and Fixing Inconsistent Readings from Information Extraction Systems
联合识别和修复信息提取系统的不一致读数
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Padia, Ankur;Ferraro, Francis;Finin, Tim
- 通讯作者:Finin, Tim
Bridging the Gap: Using Deep Acoustic Representations to Learn Grounded Language from Percepts and Raw Speech
- DOI:10.1609/aaai.v36i10.21335
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Gaoussou Youssouf Kebe;Luke E. Richards;Edward Raff;Francis Ferraro;Cynthia Matuszek
- 通讯作者:Gaoussou Youssouf Kebe;Luke E. Richards;Edward Raff;Francis Ferraro;Cynthia Matuszek
Head Pose for Object Deixis in VR-Based Human-Robot Interaction
基于 VR 的人机交互中物体指示的头部姿势
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Higgins, Padraig;Barron, Ryan;Matuszek, Cynthia
- 通讯作者:Matuszek, Cynthia
Neural Variational Learning for Grounded Language Acquisition
- DOI:10.1109/ro-man50785.2021.9515374
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:Nisha Pillai;Cynthia Matuszek;Francis Ferraro
- 通讯作者:Nisha Pillai;Cynthia Matuszek;Francis Ferraro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cynthia Matuszek其他文献
Talking to Robots: Learning to Ground Human Language in Perception and Execution
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Cynthia Matuszek - 通讯作者:
Cynthia Matuszek
Photogrammetry and VR for Comparing 2D and Immersive Linguistic Data Collection (Student Abstract)
用于比较 2D 和沉浸式语言数据收集的摄影测量和 VR(学生摘要)
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jacob Rubinstein;Cynthia Matuszek;Don Engel - 通讯作者:
Don Engel
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.3
- 作者:
M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu - 通讯作者:
Zhou Yu
Automated Population of Cyc: Extracting Information about Named-entities from the Web
Cyc 的自动填充:从 Web 中提取有关命名实体的信息
- DOI:
10.13016/m2ns0m20t - 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Purvesh Shah;David Schneider;Cynthia Matuszek;Robert C. Kahlert;Bjørn Aldag;David Baxter;J. Cabral;M. Witbrock;Jon Curtis - 通讯作者:
Jon Curtis
Dialogue with Robots: Proposals for Broadening Participation and Research in the SLIVAR Community
与机器人对话:扩大 SLIVAR 社区参与和研究的提案
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Casey Kennington;Malihe Alikhani;Heather Pon;Katherine Atwell;Yonatan Bisk;Daniel Fried;Felix Gervits;Zhao Han;Mert Inan;Michael Johnston;Raj Korpan;Diane Litman;M. Marge;Cynthia Matuszek;Ross Mead;Shiwali Mohan;Raymond Mooney;Natalie Parde;Jivko Sinapov;Angela Stewart;Matthew Stone;Stefanie Tellex;Tom Williams - 通讯作者:
Tom Williams
Cynthia Matuszek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cynthia Matuszek', 18)}}的其他基金
NSF 2024 NRI/FRR PI Meeting; Baltimore, Maryland; 28-30 April 2024
NSF 2024 NRI/FRR PI 会议;
- 批准号:
2414547 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
CAREER: Robots, Speech, and Learning in Inclusive Human Spaces
职业:包容性人类空间中的机器人、语音和学习
- 批准号:
2145642 - 财政年份:2022
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
NRI: FND: Semi-Supervised Deep Learning for Domain Adaptation in Robotic Language Acquisition
NRI:FND:用于机器人语言习得领域适应的半监督深度学习
- 批准号:
2024878 - 财政年份:2020
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
RI: Small: Concept Formation in Partially Observable Domains
RI:小:部分可观察领域中的概念形成
- 批准号:
1813223 - 财政年份:2018
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
CRII: RI: Joint Models of Language and Context for Robotic Language Acquisition
CRII:RI:机器人语言习得的语言和语境联合模型
- 批准号:
1657469 - 财政年份:2017
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
- 批准号:
1637937 - 财政年份:2016
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
- 批准号:
2335265 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Cooperative Agreement
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
- 批准号:
24K16140 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The development and evaluation of a digital role playing game (RPG) as a tool to support foreign language learning
作为支持外语学习工具的数字角色扮演游戏(RPG)的开发和评估
- 批准号:
24K04095 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the potential for developing self-regulation in foreign language learners through the use of computer-based large language models and machine learning
通过使用基于计算机的大语言模型和机器学习来调查外语学习者自我调节的潜力
- 批准号:
24K04111 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Navigating Chemical Space with Natural Language Processing and Deep Learning
利用自然语言处理和深度学习驾驭化学空间
- 批准号:
EP/Y004167/1 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Research Grant
FastMap-IMPACT: Brain mechanisms of rapid language learning: an Investigation of Memory in Patients and Ageing with Consolidation Theory
FastMap-IMPACT:快速语言学习的大脑机制:用巩固理论研究患者记忆和衰老
- 批准号:
EP/Y016815/1 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Fellowship
CAREER: Symbolic Learning with Neural Language Models
职业:使用神经语言模型进行符号学习
- 批准号:
2338833 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Continuing Grant
Research on personalization of spoken-dialogue-based computer-assisted-language-learning system
基于口语对话的计算机辅助语言学习系统的个性化研究
- 批准号:
23K24962 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
- 批准号:
2418277 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Standard Grant
Identifying the role of sensorimotor feedback as a mechanism for language learning in the first three years of life
确定感觉运动反馈作为生命前三年语言学习机制的作用
- 批准号:
EP/X042405/1 - 财政年份:2024
- 资助金额:
$ 21.95万 - 项目类别:
Research Grant