EAGER: Learning a High-Fidelity Semantic Parser
EAGER:学习高保真语义解析器
基本信息
- 批准号:1940981
- 负责人:
- 金额:$ 14.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Communication with computers in ordinary language is a long-sought goal of AI researchers, educational, commercial, and government enterprises, and everyone who uses computers. The most impressive systems to date depend on coding of thousands of specialized "skills" by thousands of expert programmers. Ordinary comments such as "I'm afraid I won't make it to the meeting" and "She managed to get the insulin shot in time" are not understood well enough to draw obvious conclusions such as "I won't be at the meeting" and "She got the insulin shot in time". This exploratory EAGER project takes a step towards machine understanding of ordinary language, by providing a comprehensive way of representing the content of language in machines, and developing a machine learning technique that allows computers to translate language into that representation, and hence make the kinds of inferences mentioned. This in turn provides immediate tools for improving systems that require some degree of general understanding and inference, such as dialogue systems, sentiment analysis systems, and systems that extract desired knowledge from text. The high-fidelity representations of meaning produced by the semantic parser also provides a substrate for deriving deeper meanings, using what we know about the way discourse segments form coherent passages, and making use of general knowledge about word meanings and the world. The project team consists of a diverse group guided by the project principal investigators, several graduate-level and a dozen undergraduate-level researchers.This project focuses on deriving "unscoped logical forms" (ULFs) reflecting the semantic type structure of standard English sentences with unprecedented fidelity, covering not only predication but also quantification, tense, modality, reification, predicate and sentence modification, comparison structures, and other semantic phenomena. As such, it moves well beyond the expressive range of current mainstream approaches, such as Abstract Meaning Representation (AMR). Thanks to its type coherence, ULF supports forward discourse inferences from text in a more comprehensive way than Natural Logic, and without requiring knowledge of a target hypothesis to be confirmed or disconfirmed. Demonstrating inferences from clause-taking verbs, counterfactuals, questions, and requests provides an important proof of concept. The semantic ULF parser is produced by supervised learning of a cache transition parser, much like one previously applied successfully to AMR parsing, but enhanced by prioritizing type-consistent operator-operand combinations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
用普通语言与计算机交流是人工智能研究人员、教育、商业和政府企业以及每个使用计算机的人长期追求的目标。到目前为止,最令人印象深刻的系统依赖于数千名专业程序员对数千种专业“技能”的编码。诸如“恐怕我不能到会了”、“她设法及时注射了胰岛素”等普通评论被理解得不够好,无法得出诸如“我不会出席会议”、“她及时注射了胰岛素”等显而易见的结论。这个探索性的、渴望的项目向普通语言的机器理解迈出了一步,提供了一种在机器中表示语言内容的综合方法,并开发了一种机器学习技术,允许计算机将语言翻译成表示形式,从而做出上述类型的推理。这反过来又为改进需要一定程度的一般理解和推理的系统提供了直接的工具,例如对话系统、情感分析系统和从文本中提取所需知识的系统。语义解析器产生的高保真意义表示也为推导更深层次的意义提供了基础,使用了我们所知的语篇片段形成连贯段落的方式,并利用了关于词义和世界的一般知识。该项目团队由项目首席研究员、多名研究生和十几名本科生研究人员组成。该项目致力于以前所未有的逼真度推导出反映标准英语句子的语义类型结构的“无范围逻辑形式”(ULF),不仅包括谓词,还包括数量、时态、情态、物化、谓词和句子修饰、比较结构等语义现象。因此,它远远超出了当前主流方法的表达范围,如抽象意义表征(AMR)。由于其类型连贯,ULF以比自然逻辑更全面的方式支持从文本中进行的前向话语推理,并且不需要对目标假设的知识进行确认或反驳。论证从句动词、反事实、问题和请求的推论提供了一个重要的概念证明。语义ULF解析器是由缓存转换解析器的监督学习产生的,与之前成功应用于AMR解析的解析器非常相似,但通过对类型一致的运算符-操作数组合进行优先排序而得到增强。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning General Event Schemas with Episodic Logic
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lane Lawley;Lenhart K. Schubert
- 通讯作者:Lane Lawley;Lenhart K. Schubert
Registering historical context in a spoken dialogue system for spatial question answering in a physical blocks world
在口语对话系统中注册历史背景,以便在物理块世界中回答空间问题
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kane, Benjamin;Platonov, Georgiy;Lenhart K. Schubert, Georgiy
- 通讯作者:Lenhart K. Schubert, Georgiy
A transition-based parser for unscoped episdoc logical form
用于无范围epsdoc逻辑形式的基于转换的解析器
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Kim, Gene Louis;Duong, Viet;Lu, Xin;Schubert, Lenhart
- 通讯作者:Schubert, Lenhart
Logical Story Representations via FrameNet + Semantic Parsing
通过 FrameNet 语义解析进行逻辑故事表示
- DOI:10.18653/v1/2022.distcurate-1.3
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lawley, Lane;Schubert, Lenhart
- 通讯作者:Schubert, Lenhart
Montague Grammar Induction
- DOI:10.3765/salt.v30i0.4816
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Gene Louis Kim;Aaron Steven White
- 通讯作者:Gene Louis Kim;Aaron Steven White
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lenhart Schubert其他文献
SOPHIE: Testing a Virtual, Interactive, AI-Augmented End-of-Life Communication Training Tool (RP122)
索菲:测试一款虚拟交互式、人工智能增强的临终沟通训练工具(RP122)
- DOI:
10.1016/j.jpainsymman.2024.02.469 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:3.500
- 作者:
Kurtis G. Haut;Ronald Epstein;Thomas M. Carroll;Benjamin Kane;Lenhart Schubert;Ehsan Hoque - 通讯作者:
Ehsan Hoque
Monotonic Inference with Unscoped Episodic Logical Forms: From Principles to System
具有无范围情景逻辑形式的单调推理:从原理到系统
- DOI:
10.1007/s10849-023-09412-2 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
G. Kim;Mandar Juvekar;Junis Ekmekciu;Viet;Lenhart Schubert - 通讯作者:
Lenhart Schubert
Lenhart Schubert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lenhart Schubert', 18)}}的其他基金
RI: Small: Adapting a Natural Logic Reasoning Platform to the Task of Entailment Inference
RI:小:使自然逻辑推理平台适应蕴涵推理任务
- 批准号:
1016735 - 财政年份:2010
- 资助金额:
$ 14.91万 - 项目类别:
Standard Grant
RI: Small: General Knowledge Bootstrapping from Text
RI:小:从文本引导常识知识
- 批准号:
0916599 - 财政年份:2009
- 资助金额:
$ 14.91万 - 项目类别:
Continuing Grant
IIS: Knowledge Representation and Reasoning Mechanisms for Explicitly Self-Aware Communicative Agents
IIS:显式自我意识交流代理的知识表示和推理机制
- 批准号:
0535105 - 财政年份:2006
- 资助金额:
$ 14.91万 - 项目类别:
Standard Grant
Deriving General World Knowledge from Texts by Abstraction of Logical Forms
通过抽象逻辑形式从文本中导出一般世界知识
- 批准号:
0328849 - 财政年份:2003
- 资助金额:
$ 14.91万 - 项目类别:
Standard Grant
ITR: Mining Text for General World Knowledge
ITR:挖掘文本以获取一般世界知识
- 批准号:
0082928 - 财政年份:2000
- 资助金额:
$ 14.91万 - 项目类别:
Continuing Grant
Robust, Incremental Parsing and Disambiguation for a Dialog Agent
对话代理的稳健、增量解析和消歧
- 批准号:
9503312 - 财政年份:1995
- 资助金额:
$ 14.91万 - 项目类别:
Continuing Grant
The Representation of Unreliable General Knowledge for Narrative Understanding
叙事理解中不可靠的一般知识的表示
- 批准号:
9013160 - 财政年份:1991
- 资助金额:
$ 14.91万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A Parallel, High-Fidelity Coupled Machine Learning/ CFD Solver Method for Solving Exascale CFD Problems with Turbulence Damping at the Liquid-Gas Inte
一种并行、高保真耦合机器学习/CFD 求解器方法,用于解决液气界面湍流阻尼的百亿亿次 CFD 问题
- 批准号:
2883937 - 财政年份:2023
- 资助金额:
$ 14.91万 - 项目类别:
Studentship
CC* Integration-Small: Integrating Application Agnostic Learning with FABRIC for Enabling Realistic High-Fidelity Traffic Generation and Modeling
CC* Integration-Small:将应用程序无关学习与 FABRIC 集成,以实现现实的高保真流量生成和建模
- 批准号:
2419070 - 财政年份:2023
- 资助金额:
$ 14.91万 - 项目类别:
Standard Grant
CAREER: New Foundations for Multi-Fidelity Prediction, Estimation, and Learning Under Uncertainty in Dynamical Systems
职业生涯:动态系统不确定性下多保真度预测、估计和学习的新基础
- 批准号:
2238913 - 财政年份:2023
- 资助金额:
$ 14.91万 - 项目类别:
Standard Grant
Multiscale, Multi-fidelity and Multiphysics Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Models for Modelling Design Based Accidents
用于基于事故建模设计的多尺度、多保真度和多物理场贝叶斯神经网络 (BNN) 机器学习 (ML) 替代模型
- 批准号:
2764855 - 财政年份:2022
- 资助金额:
$ 14.91万 - 项目类别:
Studentship
Machine Learning Accelerated High-Fidelity Screening of Single Atom Catalysts for Electrochemical Nitrogen Reduction
机器学习加速电化学氮还原单原子催化剂的高保真筛选
- 批准号:
545861-2020 - 财政年份:2022
- 资助金额:
$ 14.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
CAREER: Machine-Learning Construction of Energy-Stable Non-Newtonian Fluid Hydrodynamics with Molecular Fidelity
职业:具有分子保真度的能量稳定非牛顿流体流体动力学的机器学习构建
- 批准号:
2143739 - 财政年份:2022
- 资助金额:
$ 14.91万 - 项目类别:
Continuing Grant
Machine Learning Accelerated High-Fidelity Screening of Single Atom Catalysts for Electrochemical Nitrogen Reduction
机器学习加速电化学氮还原单原子催化剂的高保真筛选
- 批准号:
545861-2020 - 财政年份:2021
- 资助金额:
$ 14.91万 - 项目类别:
Postgraduate Scholarships - Doctoral
CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
- 批准号:
2047127 - 财政年份:2021
- 资助金额:
$ 14.91万 - 项目类别:
Continuing Grant
A Bayesian Neural Network (BNN) Machine Learning (ML) Surrogate Modelling Framework for High-Fidelity Thermal Fatigue Modelling of Components
用于组件高保真热疲劳建模的贝叶斯神经网络 (BNN) 机器学习 (ML) 代理建模框架
- 批准号:
2622146 - 财政年份:2021
- 资助金额:
$ 14.91万 - 项目类别:
Studentship
High-fidelity simulation and machine learning modeling of clean biomass combustion
清洁生物质燃烧的高保真模拟和机器学习建模
- 批准号:
21F30351 - 财政年份:2021
- 资助金额:
$ 14.91万 - 项目类别:
Grant-in-Aid for JSPS Fellows