EAGER: An Experiment-Based Framework for Turbulent Combustion Modeling
EAGER:基于实验的湍流燃烧建模框架
基本信息
- 批准号:1941430
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-12-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The prediction of turbulent combustion processes that is relevant to the design and optimization of combustion devices (e.g. spark ignition and diesel engines, aircraft and rocket engines) presents critical challenges. These challenges can be attributed to the complexity of predicting turbulent flows, chemical reactions involving thousands of chemical species and the coupling between turbulence and chemistry. The increasing availability of experimental data obtained using laser-based non-intrusive methods has enabled new paradigms for predicting turbulent combustion processes. These paradigms are based on constructing turbulent combustion models starting from experimental data that can be carried out in combustion devices through optical access. Such data-based paradigms overcome the most limiting assumptions associated with traditional models for turbulent combustion to overcome the complex, multiscale nature of turbulent combustion processes.The present effort exploits the emergence of high-fidelity experimental data to develop a novel data-based modeling framework for turbulent combustion. The approach targets specifically an experimental approach that gathers measurements for temperature and key chemical species that represent the complexity of the combustion problem. Such measurements are carried out on small or point volumes at relatively high frequencies that enable an adequate assessment of the statistical moments and distributions of the measured quantities. The novel framework elements include: 1) the development of a model reduction strategy to generate a reduced description of the chemical system using principal component analysis, 2) methods for recovering unmeasured chemical species, which are needed for a complete description of the fuel chemistry, and 3) methods for combining statistical distributions to construct means of quantities needed to assess the flame structure and the combustion performance. Principal component analysis produces a reduced description of the chemical system, which translates into an efficient computational implementation of the framework, especially for practical combustion devices. Since the measurements involve a partial account for the chemical system (only a fraction of the chemical species is measured), a principal challenge is related to the recovery of the unmeasured species. This recovery is achieved through a stochastic simulation model that mixes and reacts the individual measurements to evolve an estimate of the missing species. The project will involve both validation of the framework elements as well as numerical studies based on the developed framework using available experimental and computational data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与燃烧装置(例如火花点火和柴油发动机、飞机和火箭发动机)的设计和优化相关的湍流燃烧过程的预测提出了关键挑战。这些挑战可以归因于预测湍流的复杂性,涉及数千种化学物质的化学反应以及湍流和化学之间的耦合。使用基于激光的非侵入式方法获得的实验数据的日益增加的可用性使得能够预测湍流燃烧过程的新范例。这些范例基于从实验数据开始构建湍流燃烧模型,所述实验数据可以通过光学访问在燃烧装置中进行。这种基于数据的范例克服了与湍流燃烧的传统模型相关联的最有限的假设,以克服复杂的,多尺度的湍流燃烧processes.The目前的努力利用高保真实验数据的出现,开发一种新的基于数据的湍流燃烧建模框架。该方法专门针对一种实验方法,该方法收集代表燃烧问题复杂性的温度和关键化学物质的测量值。这种测量是在小体积或点体积上以相对高的频率进行的,这使得能够充分评估测量量的统计矩和分布。新的框架要素包括:1)开发模型简化策略,以使用主成分分析生成化学系统的简化描述,2)用于恢复未测量的化学物质的方法,这是燃料化学的完整描述所需的,和3)的方法结合统计分布的方法来构造评估火焰结构和燃烧性能所需的量的手段。主成分分析产生的化学系统,这转化为一个有效的计算实现的框架,特别是对于实际的燃烧装置的减少的描述。由于测量涉及化学系统的部分帐户(只有一小部分的化学物种被测量),一个主要的挑战是有关的恢复未测量的物种。这种恢复是通过一个随机模拟模型,混合和反应的个别测量,以发展的估计失踪的物种。该项目将涉及框架元素的验证以及基于可用实验和计算数据开发的框架的数值研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的评估被认为值得支持影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Experiment-Based Modeling of Turbulent Flames with Inhomogeneous Inlets
基于实验的不均匀入口湍流火焰建模
- DOI:10.1007/s10494-021-00304-8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ranade, Rishikesh;Echekki, Tarek;Masri, Assaad R.
- 通讯作者:Masri, Assaad R.
Investigation of deep learning methods for efficient high-fidelity simulations in turbulent combustion
- DOI:10.1016/j.combustflame.2021.111814
- 发表时间:2022-02
- 期刊:
- 影响因子:4.4
- 作者:Kevin M. Gitushi;Rishikesh Ranade;T. Echekki
- 通讯作者:Kevin M. Gitushi;Rishikesh Ranade;T. Echekki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tarek Echekki其他文献
Investigation of lifted jet flames stabilization mechanism using RANS simulations
- DOI:
10.1016/j.firesaf.2011.02.007 - 发表时间:
2011-07-01 - 期刊:
- 影响因子:
- 作者:
Wei Wang;Tarek Echekki - 通讯作者:
Tarek Echekki
A PINN-DeepONet framework for extracting turbulent combustion closure from multiscalar measurements
一种用于从多标量测量中提取湍流燃烧封闭的 PINN-DeepONet 框架
- DOI:
10.1016/j.cma.2024.117163 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:7.300
- 作者:
Arsalan Taassob;Anuj Kumar;Kevin M. Gitushi;Rishikesh Ranade;Tarek Echekki - 通讯作者:
Tarek Echekki
Asymptotic analysis of steady two-reactant premixed flames using a step-function reaction rate model
- DOI:
10.1016/j.combustflame.2016.07.027 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:
- 作者:
Tarek Echekki - 通讯作者:
Tarek Echekki
Tarek Echekki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tarek Echekki', 18)}}的其他基金
Multiscale Turbulent Reacting Flows and Data-Based Modeling
多尺度湍流反应流和基于数据的建模
- 批准号:
1217200 - 财政年份:2012
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Computational Methods for Multiscale Turbulent Reacting Flows
多尺度湍流反应流的计算方法
- 批准号:
0915150 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Computational and Experimental Studies of Turbulent Premixed Flame Kernels
湍流预混火焰核的计算与实验研究
- 批准号:
0810537 - 财政年份:2008
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
Novel Machine Learning-Based Event Reconstruction and Analysis for the Water Cherenkov Experiment
基于机器学习的新型水切伦科夫实验事件重建和分析
- 批准号:
22KF0113 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of prodrug-type anticancer drugs using a design of experiment system based on computational chemistry and Bayesian optimization
利用基于计算化学和贝叶斯优化的实验系统设计开发前药型抗癌药物
- 批准号:
23K19424 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Clarification of the practice of Western medicine in Edo Period by experiment based historical methodology and novel non-destructive analysis
通过基于实验的历史方法和新颖的非破坏性分析阐明江户时代的西医实践
- 批准号:
23K17497 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of teaching effectiveness measurement indices for an active-learning based physics experiment class
主动学习型物理实验课教学效果衡量指标的制定
- 批准号:
23H00976 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A population-based analysis of acute diverticulitis emergent presentation patterns and surgical interventions: A natural experiment during the COVID-19 pandemic
基于人群的急性憩室炎突发表现模式和手术干预分析:COVID-19 大流行期间的自然实验
- 批准号:
486175 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Studentship Programs
Development of novel biochemical experiment tools based on metal-olefin specific interactions
基于金属-烯烃特异性相互作用的新型生化实验工具开发
- 批准号:
22K05316 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on a lifecycle of interstellar organics based on synthesis and denaturing experiment of quenched nitrogen-included carbonaceous composite
基于淬火含氮碳质复合材料合成与变性实验的星际有机物生命周期研究
- 批准号:
22H01261 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Learning to think like a climate crisis lawyer: When case-based legal education engages with the Anthropocene thought experiment
学习像气候危机律师一样思考:当基于案例的法律教育与人类世思想实验相结合时
- 批准号:
22K01275 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Excellence in Research: Experiment Efficient Modeling Method of Dynamic Systems Based on Short-Term Dependency and Non-Recurrent Neural Networks
卓越研究:基于短期依赖和非循环神经网络的动态系统实验高效建模方法
- 批准号:
2100956 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
The development of a beam position monitor based on Cherenkov diffraction radiation for operation at the AWAKE experiment.
开发基于切伦科夫衍射辐射的光束位置监视器,用于 AWAKE 实验。
- 批准号:
2585099 - 财政年份:2021
- 资助金额:
$ 10万 - 项目类别:
Studentship