Collaborative Research: Using behavioral, computational, and neural approaches to understand correction of first impressions.

协作研究:使用行为、计算和神经方法来理解第一印象的纠正。

基本信息

  • 批准号:
    1941694
  • 负责人:
  • 金额:
    $ 19.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Developing correct impressions of others is critical in many situations, including medical, legal, and interpersonal. It is sometimes hard to get past one’s initial positive or negative impressions of other people, even when new information is learned about them. Psychological science has shown that people pay a lot of attention to other’s initial behaviors and draw conclusions about those individuals based on those initial behaviors. For example, meeting someone who is being rude to another person may quickly lead to forming a negative impression. Even if people behave differently later on, and in different circumstances, it can be hard to move past those original feelings. Often, the first information people learn about another person might be false to begin with. This can happen through mistaken interpretations of someone’s behavior, false news or misinformation, learning information out of context, or through gossip or rumors. These issues are of particular importance when making important decisions regarding activities such as college admissions, hiring, promotion, and assessing patients and clients in medicine and law. These kinds of impressions have the potential to influence behavior, and so it is important to understand how these kinds of impressions can be corrected. This project examines people’s ability to accurately learn about the world around them, and when and how new information changes pre-existing impressions and beliefs. Understanding when and how people change their minds about other people is critically important for understanding how to correct biased assumptions. The information gained from this research will help illuminate how decision-makers integrate new information about individuals, such as patients, criminal suspects, clients, and job applicants, into their overall impressions. This project focuses on two main theoretical questions about how people correct their impressions of other people. One question is whether updating of impressions occurs through “reconsolidation” versus “contextualization”. Reconsolidation occurs when new information that contradicts a first impression is integrated into the original information, such that the original memory is changed and is no longer recalled (i.e., a long-lasting change occurs). For example, when a public health official tries to correct misinformation about a current health policy, the ideal case would be that the false initial belief is completely replaced with the correct one. Contextualization, on the other hand, is when new memories are added to the original memory, and are tied to the situation in which the information was encountered. As a result, the first impression can still be activated from memory in that same situation. That is, the original memories are still retained, along with the new memories. However, they are tied to specific circumstances (e.g., she is rude at work, but polite when socializing). The second question concerns the durability of, and the time course over which, updating occurs. It is expected that updating that occurs through reconsolidation will last longer than updating that occurs through contextualization. This research tests how these processes influence person perception decisions over time. The studies examine these questions using behavioral, neuroimaging, and computational approaches. Results will have implications for models of person memory, impression formation, and persuasion. The project will contribute to a base of knowledge concerning how decision makers integrate new information about other people, with relevance to interactions with patients, criminal suspects, clients, and job applicants. This project is co-funded by the Social Psychology and the Perception, Action, and Cognition Programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多情况下,培养对他人的正确印象是至关重要的,包括医疗、法律和人际关系。有时很难忘记一个人最初对他人的正面或负面印象,即使是在了解到关于他们的新信息时也是如此。心理科学表明,人们非常关注他人的初始行为,并根据这些初始行为得出关于这些个人的结论。例如,遇到对另一个人粗鲁的人可能很快就会形成负面印象。即使人们后来的行为不同,在不同的情况下,也很难忘记那些原始的感觉。通常,人们了解另一个人的第一个信息可能一开始就是错误的。这可能是通过对某人行为的错误解释、虚假新闻或错误信息、断章取义地学习信息,或者通过八卦或谣言来实现的。这些问题在做出关于大学招生、招聘、晋升以及评估医学和法律领域的患者和客户等活动的重要决定时尤其重要。这些类型的印象有可能影响行为,因此了解如何纠正这些类型的印象是很重要的。这个项目考察了人们准确了解周围世界的能力,以及新信息何时以及如何改变了先前存在的印象和信念。了解人们何时以及如何改变对他人的看法,对于理解如何纠正有偏见的假设至关重要。从这项研究中获得的信息将有助于阐明决策者如何将有关个人的新信息,如患者、犯罪嫌疑人、客户和求职者,整合到他们的总体印象中。这个项目聚焦于两个主要的理论问题,即人们如何纠正对他人的印象。一个问题是,印象的更新是通过“重新整合”还是“语境化”来实现的。当与第一印象相矛盾的新信息被整合到原始信息中,使得原始记忆被改变并且不再被回忆时,重新整合就发生了(即,发生了长期的变化)。例如,当公共卫生官员试图纠正有关当前健康政策的错误信息时,理想的情况是错误的初始信念完全被正确的信念所取代。另一方面,情境化是指当新的记忆被添加到原始记忆中,并与信息被遇到的情况联系在一起时。因此,在同样的情况下,第一印象仍然可以从记忆中激活。也就是说,原始记忆仍然被保留,以及新的记忆。然而,它们与特定的情况有关(例如,她在工作中很粗鲁,但在社交时很有礼貌)。第二个问题涉及更新的持久性和进行更新的时间进程。预计通过重新整合进行的更新将比通过情景更新进行的更新持续时间更长。这项研究测试了随着时间的推移,这些过程如何影响人们的感知决策。这些研究使用行为、神经成像和计算方法来研究这些问题。结果将对人的记忆、印象形成和说服的模型产生影响。该项目将有助于建立一个关于决策者如何整合与患者、犯罪嫌疑人、客户和求职者互动的关于其他人的新信息的知识基础。该项目由社会心理学和知觉、行动和认知计划共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gordon Moskowitz其他文献

Gordon Moskowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gordon Moskowitz', 18)}}的其他基金

Control Over Stereotype Activation by Preconscious and Temporary Goals
通过前意识和临时目标控制刻板印象的激活
  • 批准号:
    0213693
  • 财政年份:
    2002
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Adaptive Spatial Pattern Recognition and Time Series Signal Analysis Techniques for Myoelectric Control of Lower Limb Prostheses
下肢假肢肌电控制的自适应空间模式识别和时间序列信号分析技术
  • 批准号:
    8307062
  • 财政年份:
    1984
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
  • 批准号:
    2344722
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342747
  • 财政年份:
    2024
  • 资助金额:
    $ 19.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了