CAREER: Learning Neurosymbolic 3D Models

职业:学习神经符号 3D 模型

基本信息

  • 批准号:
    1941808
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

High-quality 3D models are increasingly in demand, driven by numerous industries and by the need for synthetic training data to scale up autonomous vision systems. But creating such models is a laborious and time-consuming process requiring years of training, so current practice will be insufficient to satisfy future data demands. One way forward is through generative models of 3D objects, that is to have machines learn to synthesize high-quality objects, a nice vision which has yet to be realized. Existing 3D generative models fall into one of two broad categories, each with limitations. Symbolic generative models such as shape grammars can enable non-experts to generate high-quality geometry but have severely limited expressiveness, while neural generative models are flexible and can in theory learn to express any shape but they are inscrutable and produce flawed geometry. This project will explore a new class of generative shape model that combines the best of both worlds: neuro-symbolic 3D models. The main insight is to use a symbolic program to model the logical part structure of a 3D object (e.g., the legs of a chair are connected to its seat), and then to use neural networks to refine this structure into high-quality geometry. Such a representation supports synthesis of new objects, reconstruction of objects from real-world sensor input, and high-level editing of object structure and geometry. It also supports modeling of higher-order object properties, including kinematics and physics. To enable massive-scale generation of synthetic 3D training data for computer vision and robotics, a neuro-symbolic version of the widely used ShapeNet dataset will be implemented and released. To help democratize 3D content creation, the project will collaborate with Unity Technologies to integrate neuro-symbolic 3D models into their popular 3D graphics engine. Project outcomes will also include an open-source, pedagogical deep learning framework to educate a new generation of researchers with the multidisciplinary skillset needed for neuro-symbolic modeling, in concert with activities (e.g., piloting new integrated visual computing curricula via summer schools and hosting visiting student researchers from historically under-represented groups) designed to improve student mastery of neural network fundamentals.The recognition-by-components theory of vision posits that people recognize objects by first understanding their fundamental parts and then using a secondary process to handle objects that are not distinguishable by these parts alone. Neuro-symbolic 3D models operationalize this theory for object synthesis via two algorithmic phases. The first phase is a new procedural representation called a hierarchical part graph program that is a human-readable computer program which, when executed, constructs a graph of connected object parts at multiple levels of detail wherein the bottom level of detail consists of parametric primitives such as cuboids and cylinders. While suggestive of shape, these graphs do not capture the full variety of geometry found in real-world objects. Thus, the second phase of the model is a new neural adaptive subdivision procedure which converts the low-fidelity parts into high-fidelity surface geometry. This decomposition is a natural fit for the common case of human-made objects, but it can also be extended to organic objects. The hypothesis is that this approach to 3D object generation will be able to efficiently synthesize and reconstruct a variety of high-quality objects in a unified, easily-editable representation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在众多行业的推动下,高质量的3D模型的需求日益增长,并且需要合成训练数据来扩展自主视觉系统。但是创建这样的模型是一个费力且耗时的过程,需要多年的培训,因此目前的实践将不足以满足未来的数据需求。一种方法是通过3D物体的生成模型,即让机器学习合成高质量的物体,这是一个尚未实现的美好愿景。现有的3D生成模型分为两大类,每一类都有局限性。符号生成模型(如形状语法)可以使非专家生成高质量的几何形状,但其表达能力严重有限,而神经生成模型是灵活的,理论上可以学习表达任何形状,但它们是不可理解的,并产生有缺陷的几何形状。这个项目将探索一种新的生成形状模型,它结合了两个世界的优点:神经符号3D模型。主要的见解是使用一个符号程序来模拟一个3D对象的逻辑部分结构(例如,椅子的腿连接到它的座位),然后使用神经网络将这个结构提炼成高质量的几何形状。这种表示支持新对象的合成,从现实世界的传感器输入重建对象,以及对象结构和几何的高级编辑。它还支持高阶对象属性的建模,包括运动学和物理学。为了能够大规模生成计算机视觉和机器人的合成3D训练数据,将实现和发布广泛使用的ShapeNet数据集的神经符号版本。为了促进3D内容创作的大众化,该项目将与Unity Technologies合作,将神经符号3D模型集成到他们流行的3D图形引擎中。项目成果还将包括一个开源的教学深度学习框架,以教育新一代的研究人员,使他们具备神经符号建模所需的多学科技能,并与旨在提高学生对神经网络基础知识的掌握的活动(例如,通过暑期学校试点新的综合视觉计算课程,并接待来自历史上代表性不足的群体的访问学生研究人员)相一致。视觉成分识别理论认为,人们首先通过理解物体的基本部分来识别物体,然后使用二级过程来处理仅凭这些部分无法区分的物体。神经符号三维模型通过两个算法阶段将这一理论用于对象合成。第一阶段是一种新的过程表示,称为分层零件图程序,这是一种人类可读的计算机程序,在执行时,它在多个细节层次上构建连接对象零件的图形,其中底层细节由参数基元(如长方体和圆柱体)组成。虽然这些图形暗示了形状,但并没有捕捉到现实世界中物体的全部几何形状。因此,该模型的第二阶段是一种新的神经自适应细分过程,将低保真零件转换为高保真的表面几何形状。这种分解很自然地适用于人造物体的常见情况,但它也可以扩展到有机物体。假设这种3D对象生成方法将能够以统一的、易于编辑的表示形式有效地合成和重建各种高质量的对象。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improving Unsupervised Visual Program Inference with Code Rewriting Families
通过代码重写系列改进无监督视觉程序推理
The Neurally-Guided Shape Parser: Grammar-based Labeling of 3D Shape Regions with Approximate Inference
Unsupervised Kinematic Motion Detection for Part-segmented 3D Shape Collections
  • DOI:
    10.1145/3528233.3530742
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xianghao Xu;Yifan Ruan;Srinath Sridhar;Daniel Ritchie
  • 通讯作者:
    Xianghao Xu;Yifan Ruan;Srinath Sridhar;Daniel Ritchie
Neurosymbolic Models for Computer Graphics
  • DOI:
    10.1111/cgf.14775
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Daniel Ritchie;Paul Guerrero;R. K. Jones;N. Mitra;Adriana Schulz;Karl D. D. Willis-Karl-D.-D.-Willis-2269914;Jiajun Wu
  • 通讯作者:
    Daniel Ritchie;Paul Guerrero;R. K. Jones;N. Mitra;Adriana Schulz;Karl D. D. Willis-Karl-D.-D.-Willis-2269914;Jiajun Wu
ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives
  • DOI:
    10.1145/3592416
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. K. Jones;Paul Guerrero;N. Mitra;Daniel Ritchie
  • 通讯作者:
    R. K. Jones;Paul Guerrero;N. Mitra;Daniel Ritchie
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Ritchie其他文献

Probabilistic programming for procedural modeling and design
用于过程建模和设计的概率编程
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
Supplementary Document for CLIP-Sculptor
CLIP-Sculptor 的补充文档
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aditya Sanghi;Rao Fu;Vivian Liu;Karl D. D. Willis;Hooman Shayani;A. Khasahmadi;Srinath Sridhar;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
High-Throughput Automated Microscopy Platform for the Allen Brain Atlas
适用于艾伦脑图谱的高通量自动显微镜平台
  • DOI:
    10.1016/j.jala.2007.07.003
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Slaughterbeck;S. Datta;Simon C. Smith;Daniel Ritchie;Paul E. Wohnoutka
  • 通讯作者:
    Paul E. Wohnoutka
Learning to Edit Visual Programs with Self-Supervision
学习通过自我监督编辑视觉程序
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. K. Jones;Renhao Zhang;Aditya Ganeshan;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie
Learning Finite Linear Temporal Logic Formulas
学习有限线性时态逻辑公式
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Homer Walke;Michael S. Littman;Daniel Ritchie
  • 通讯作者:
    Daniel Ritchie

Daniel Ritchie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Ritchie', 18)}}的其他基金

CISE-ANR: HCC: Small: Learning to Translate Freehand Design Drawings into Parametric CAD Programs
CISE-ANR:HCC:小型:学习将手绘设计图转换为参数化 CAD 程序
  • 批准号:
    2315354
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
REU Site: Artificial Intelligence for Computational Creativity
REU 网站:人工智能促进计算创造力
  • 批准号:
    2150184
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CCRI: Planning: A Community-Standard, Large-Scale Synthetic 3D Scene Dataset for Scene Analysis and Synthesis
CCRI:规划:用于场景分析和合成的社区标准、大规模合成 3D 场景数据集
  • 批准号:
    2016532
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CHS: Small: Learning to Automatically Design Interior Spaces
CHS:小:学习自动设计室内空间
  • 批准号:
    1907547
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CRII: CHS: Learning Procedural Modeling Programs for Computer Graphics from Examples
CRII:CHS:从示例中学习计算机图形学程序建模程序
  • 批准号:
    1753684
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
  • 批准号:
    61573081
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
  • 批准号:
    61572533
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
E-Learning中学习者情感补偿方法的研究
  • 批准号:
    61402392
  • 批准年份:
    2014
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding the Impact of Outdoor Science and Environmental Learning Experiences Through Community-Driven Outcomes
通过社区驱动的成果了解户外科学和环境学习体验的影响
  • 批准号:
    2314075
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Integrating Self-Regulated Learning Into STEM Courses: Maximizing Learning Outcomes With The Success Through Self-Regulated Learning Framework
将自我调节学习融入 STEM 课程:通过自我调节学习框架取得成功,最大化学习成果
  • 批准号:
    2337176
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
  • 批准号:
    2337884
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
  • 批准号:
    2409652
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了