CAREER: High-Dimensional M-Estimation Under Nonstandard Conditions
职业:非标准条件下的高维 M 估计
基本信息
- 批准号:1941945
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern technology in genomics, medical research and neuroscience generates enormous amounts of data, which calls for reliable statistical analysis tools. While the past decades have witnessed a surge of research activities on the analysis of big data in statistics and data science, the existing statistical tools are not adequate to produce reliable results due to the complexity of the data structure or the manner in which the data are collected in modern applications. The project will develop novel statistical and computational tools to address the emerging challenges in modern big data and implement them within software packages. The project will benefit a broad range of researchers including biologists, epidemiologists, medical doctors and neuroscientists. The research is complemented by an equally important education and outreach plan including designing new undergraduate and graduate courses and recruiting underrepresented minorities into the summer research program. This project will develop a novel computational and statistical framework for high-dimensional M-estimation under two types of nonstandard conditions. In the first project, the principal investigator will consider high-dimensional M-estimation with non-smooth loss functions (e.g. indicator function). The discontinuity of the loss function leads to nonstandard theory and requires new statistical methods equipped with more refined theoretical analysis. In the second project, the principal investigator will consider M-estimation subject to measurement constraints in the sense that the outcomes are only collected in a very small subset of a big dataset. The principal investigator will develop scalable computational algorithms and statistically valid estimation/inference procedures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基因组学、医学研究和神经科学领域的现代技术产生了大量数据,这就需要可靠的统计分析工具。 虽然在过去几十年中,统计和数据科学中大量数据分析的研究活动激增,但由于数据结构的复杂性或现代应用中收集数据的方式,现有的统计工具不足以产生可靠的结果。该项目将开发新的统计和计算工具,以应对现代大数据中新出现的挑战,并在软件包中实施这些工具。该项目将使广泛的研究人员受益,包括生物学家,流行病学家,医生和神经科学家。这项研究得到了同样重要的教育和推广计划的补充,包括设计新的本科和研究生课程,并招募代表性不足的少数民族参加夏季研究计划。 本计画将针对两种非标准条件下的高维M-估计,发展一种新的计算与统计架构。在第一个项目中,主要研究者将考虑具有非光滑损失函数(例如指示函数)的高维M估计。损失函数的不连续性导致非标准理论,需要新的统计方法配备更精细的理论分析。在第二个项目中,主要研究者将考虑受测量约束的M-估计,因为结果仅收集在大数据集的一个非常小的子集中。主要研究者将开发可扩展的计算算法和统计上有效的估计/推理程序。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adaptive Estimation of Multivariate Regression with Hidden Variables
隐变量多元回归的自适应估计
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Xing, Bing;Yang, Ning;Yaosheng, Xu
- 通讯作者:Yaosheng, Xu
Heterogeneity-aware and communication-efficient distributed statistical inference
- DOI:10.1093/biomet/asab007
- 发表时间:2022-02-01
- 期刊:
- 影响因子:2.7
- 作者:Duan, Rui;Ning, Yang;Chen, Yong
- 通讯作者:Chen, Yong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yang Ning其他文献
A new approach to simulate the supporting arch in a tunnel based on improvement of the beam element in FLAC3D
基于FLAC3D梁单元改进的隧道支护拱模拟新方法
- DOI:
10.1631/jzus.a1600508 - 发表时间:
2017-03 - 期刊:
- 影响因子:3.2
- 作者:
Li Weiteng;Yang Ning;Li Tingchun;Zhang Yuhua;Wang Gang - 通讯作者:
Wang Gang
Error analysis for pesticide detection performed on paper-based microfluidic chip devices
纸基微流控芯片装置农药检测误差分析
- DOI:
10.1142/s0217984917400243 - 发表时间:
2017-07 - 期刊:
- 影响因子:1.9
- 作者:
Yang Ning;Shen Kai;Guo Jianjiang;Tao Xinyi;Xu Peifeng;Mao Hanping - 通讯作者:
Mao Hanping
The Diagnosis of Spinal Dural Arteriovenous Fistulas
硬脊膜动静脉瘘的诊断
- DOI:
10.1097/brs.0b013e31828a38c4 - 发表时间:
2013-04-20 - 期刊:
- 影响因子:3
- 作者:
Wang Donghai;Yang Ning;Li Xingang - 通讯作者:
Li Xingang
Regime mapping of multiple breakup of droplets in shear flow by phase-field lattice Boltzmann simulation
通过相场晶格玻尔兹曼模拟对剪切流中液滴多次破碎的区域映射
- DOI:
10.1016/j.ces.2021.116673 - 发表时间:
2021-04 - 期刊:
- 影响因子:4.7
- 作者:
Zhang Jingchang;Shu Shuli;Guan Xiaoping;Yang Ning - 通讯作者:
Yang Ning
Recognition of Cu2+ and Hg2+ in physiological conditions by a new rhodamine based dual channel fluorescent probe
基于罗丹明的新型双通道荧光探针在生理条件下识别 Cu2+ 和 Hg2+
- DOI:
10.1016/j.snb.2013.11.031 - 发表时间:
2014-03 - 期刊:
- 影响因子:0
- 作者:
Zou Yu;Chen Li;Yang Ning;Zhou Xuguang - 通讯作者:
Zhou Xuguang
Yang Ning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yang Ning', 18)}}的其他基金
Safe and Robust Causal Inference for High-Dimensional Complex Data
高维复杂数据的安全稳健的因果推理
- 批准号:
2311291 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CDS&E: Graph-Based Learning and Uncertainty Quantification for Large-Scale Complex Data
CDS
- 批准号:
1854637 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Deepening and Expanding Research for Efficient Methods of Function Estimation in High Dimensional Statistical Analysis
高维统计分析中高效函数估计方法的深化和拓展研究
- 批准号:
23H03353 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: A Multi-dimensional Study of Electromagnetic Interference in Wide Bandgap Power Electronics: Modeling, Estimation, and Mitigation
职业:宽带隙电力电子中电磁干扰的多维研究:建模、估计和缓解
- 批准号:
2236846 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Highly efficient channel estimation by multi-dimensional signal processing for massive connectivity
通过多维信号处理进行高效信道估计以实现大规模连接
- 批准号:
22K04101 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimation and Inference with High-Dimensional Data
高维数据的估计和推理
- 批准号:
2210850 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
- 批准号:
RGPIN-2017-05258 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Low-dimensional representation and sensor based estimation of bluff body wakes and vortex induced vibrations
钝体尾流和涡激振动的低维表示和基于传感器的估计
- 批准号:
RGPIN-2022-03848 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Robust estimation and inference for high-dimensional time series
高维时间序列的鲁棒估计和推理
- 批准号:
2741133 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Model Selection and Efficient Estimation in Semiparametric Regression Models with Complex and High-Dimensional Data
复杂高维数据半参数回归模型的模型选择和高效估计
- 批准号:
RGPIN-2018-06466 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Parameter Estimation for Non-Gaussian Model-Based Clustering with High-Dimensional Data
基于非高斯模型的高维数据聚类参数估计
- 批准号:
RGPIN-2017-05258 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual