CAREER: Fast, Furious and Fantastic Beasts: Integrative principles, biomechanics and physical limits of impulsive motion in ultrafast organisms
职业:《速度与激情》和《神奇动物在哪里》:超快生物体中脉冲运动的综合原理、生物力学和物理极限
基本信息
- 批准号:1941933
- 负责人:
- 金额:$ 99.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In nature, certain small organisms can achieve ultrafast accelerations of millions of g-forces in nanoseconds. These extreme organisms exploit unusual elastic spring and latch structures to generate extraordinary amounts of power, far outperforming human-engineered robotic systems. However, how these diverse systems, from microscopic single cells to millimeter-sized spiders, generate high power and survive the tremendous forces generated during rapid motion remains unclear. To address this crucial knowledge gap, this project will combine mathematical theory, biological experiments, and physical modeling to better understand ultrafast motion in animals. Beyond advancing fundamental biomechanics, this work could contribute to development of faster, smaller, and stronger robots that use elastic power amplifiers. The project will support science training at many levels, including K-12, undergraduate, graduate, and postdoctoral stages. Research and training activities will broaden the participation of students from under-represented minority backgrounds in the physics of living systems. The researcher will develop a field-based invertebrate biomechanics course to bring students from many backgrounds into the rainforest to study the biophysics of ultrafast living systems. Research findings of this work will be disseminated through multiple outlets including live demonstrations at the Atlanta Zoo, bilingual comic books, and social media outlets such as YouTube and Twitter.Important gaps remain in the understanding of mechanics extreme biological spring-latch systems, which rapidly amplify power input to repeatably deliver high power at small length scales. This project will develop slingshot spiders as a new model organism for studying ultrafast motion. By storing elastic energy in an extraordinary 3-D web topology, slingshot spiders can repeatedly hurl themselves and their webs at flying insects in less than 20 milliseconds with accelerations exceeding 130g. Webs made of elastic silk actuated by hydraulically controlled legs comprise an exception springs/latch system, thus slingshot spiders are excellent models for fundamental questions concerning elastic mechanisms. Their webs and legs are ideally suited to material characterization and modelling in both lab and field environments. The principal investigator will bring high-speed instrumentation into the Peruvian Amazon to capture the ultrafast dynamics of these extreme arachnids. Combining in-situ force measurements and modeling, this research will probe fine-tuning and integration of mechanical properties of the web (spring) and hydraulic mechanics of the spider’s legs (latch) and will analyze how power amplification is maximized for a spider of a given size. This work will apply the physics of damped harmonic oscillators to reveal how slingshot webs dissipate energy and enable repetitive loading with minimum damage. By bringing low-cost, portable scientific tools to rainforests (Jungle invertebrates Biomechanics Laboratory), the project will train future scientists in invertebrate biomechanics and expand the range of potential model organisms. By developing bilingual comics (Curious Zoo of Crazy Organisms), this work will bridge language barriers in science communication to Hispanic populations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界中,某些小生物可以在纳秒内实现数百万g力的超快加速度。这些极端的生物利用不寻常的弹性弹簧和闩锁结构来产生非凡的能量,远远超过人类工程机器人系统。然而,这些不同的系统,从微观的单细胞到毫米大小的蜘蛛,如何产生高功率并在快速运动过程中产生的巨大力量中生存下来,目前尚不清楚。 为了解决这一关键的知识差距,该项目将结合联合收割机数学理论,生物实验和物理建模,以更好地了解动物的超快运动。除了推进基本的生物力学,这项工作还有助于开发更快、更小、更强的使用弹性功率放大器的机器人。该项目将支持多层次的科学培训,包括K-12,本科,研究生和博士后阶段。研究和培训活动将扩大代表性不足的少数民族背景的学生对生命系统物理学的参与。研究人员将开发一个基于实地的无脊椎动物生物力学课程,将来自不同背景的学生带入雨林,研究超快生命系统的生物物理学。这项工作的研究成果将通过多种渠道传播,包括亚特兰大动物园的现场演示,双语漫画书以及YouTube和Twitter等社交媒体。在对极端生物弹簧闩锁系统的力学理解方面仍存在重要差距,该系统可快速放大功率输入,以在小长度尺度上重复提供高功率。本项目将开发弹弓蜘蛛作为研究超快运动的新模式生物。通过在一个非凡的三维网络拓扑结构中存储弹性能量,弹弓蜘蛛可以在不到20毫秒的时间内以超过130 g的加速度反复将自己和它们的网投掷到飞行的昆虫身上。由液压控制的腿驱动的弹性丝制成的网包括一个例外弹簧/闩锁系统,因此弹弓蜘蛛是关于弹性机制的基本问题的极好模型。它们的腹板和支腿非常适合实验室和现场环境中的材料表征和建模。首席研究员将把高速仪器带到秘鲁亚马逊地区,以捕捉这些极端蛛形纲动物的超快动力学。结合现场力测量和建模,本研究将探讨微调和蜘蛛腿(闩锁)的网(弹簧)和液压力学的机械性能的集成,并将分析如何最大化功率放大为一个给定大小的蜘蛛。这项工作将应用阻尼谐振子的物理,以揭示弹弓网如何耗散能量,并使重复加载最小的损害。通过将低成本、便携式科学工具带到雨林(丛林无脊椎动物生物力学实验室),该项目将培训未来的科学家学习无脊椎动物生物力学,并扩大潜在的模式生物的范围。通过开发双语漫画(疯狂生物的好奇动物园),这项工作将弥合语言障碍,在科学传播到西班牙裔人口。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amorphous entangled active matter
非晶态缠结活性物质
- DOI:10.1039/d2sm01573k
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Savoie, William;Tuazon, Harry;Tiwari, Ishant;Bhamla, M. Saad;Goldman, Daniel I.
- 通讯作者:Goldman, Daniel I.
Oxygenation-Controlled Collective Dynamics in Aquatic Worm Blobs
水生蠕虫斑点中氧合控制的集体动力学
- DOI:10.1093/icb/icac089
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Tuazon, Harry;Kaufman, Emily;Goldman, Daniel I.;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
The ultrafast snap of a finger is mediated by skin friction
- DOI:10.1098/rsif.2021.0672
- 发表时间:2021-11-17
- 期刊:
- 影响因子:3.9
- 作者:Acharya, Raghav;Challita, Elio J.;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
Slingshot spiders build tensed, underdamped webs for ultrafast launches and speedy halts
- DOI:10.1007/s00359-021-01475-5
- 发表时间:2021-03-15
- 期刊:
- 影响因子:2.1
- 作者:Challita, Elio J.;Alexander, Symone L. M.;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
Emergent Collective Locomotion in an Active Polymer Model of Entangled Worm Blobs
- DOI:10.3389/fphy.2021.734499
- 发表时间:2021-09-30
- 期刊:
- 影响因子:3.1
- 作者:Nguyen, Chantal;Ozkan-Aydin, Yasemin;Peleg, Orit
- 通讯作者:Peleg, Orit
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saad Bhamla其他文献
<em>De novo</em> ATP-independent contractile protein network
- DOI:
10.1016/j.bpj.2023.11.3261 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Xiangting Lei;Carlos Floyd;Tuhin Charkbortty;Scott M. Coyle;Jerry E. Honts;Aaron Dinner;Suriyanarayanan Vaikuntanathan;Saad Bhamla - 通讯作者:
Saad Bhamla
Epineuston vortex recapture enhances thrust in tiny water skaters
Epineuston 涡流重新捕获增强了小型滑水者的推力
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pankaj Rohilla;Johnathan N. O’Neil;Chandan Bose;Victor M. Ortega;Daehyun Choi;Saad Bhamla - 通讯作者:
Saad Bhamla
Saad Bhamla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saad Bhamla', 18)}}的其他基金
Collaborative Research: Ideas Lab: RNA-encoded Molecular Memory (REMM)
合作研究:创意实验室:RNA 编码的分子记忆 (REMM)
- 批准号:
2243698 - 财政年份:2023
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
IRES Track1: In-situ Jungle Biomechanics Laboratory (JBL) Research Experience in the Amazon Rainforest
IRES Track1:亚马逊雨林原位丛林生物力学实验室 (JBL) 研究经验
- 批准号:
2246236 - 财政年份:2023
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
Tools4Cells: EAGER: A Molecular Pursuit for the Engram: Microfluidic temporal transcriptomics for single cell learning
Tools4Cells:EAGER:对印迹的分子追求:用于单细胞学习的微流控时间转录组学
- 批准号:
2337788 - 财政年份:2023
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
- 批准号:
2313724 - 财政年份:2023
- 资助金额:
$ 99.44万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218382 - 财政年份:2022
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
I-Corps: Delivery system for gene-based medicines
I-Corps:基因药物输送系统
- 批准号:
2120291 - 财政年份:2021
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
Collaborative Research: CYBORG cells: Modular integration of synthetic organelles into living cells
合作研究:CYBORG 细胞:将合成细胞器模块化整合到活细胞中
- 批准号:
1935262 - 财政年份:2019
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
Fundamental principles, limits, and function of ultrafast motion in single cell organisms
单细胞生物超快运动的基本原理、限制和功能
- 批准号:
1817334 - 财政年份:2018
- 资助金额:
$ 99.44万 - 项目类别:
Continuing Grant
相似国自然基金
基于FAST搜寻及观测的脉冲星多波段辐射机制研究
- 批准号:12403046
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:青年科学基金项目
FAST连续观测数据处理的pipeline开发
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于神经网络的FAST馈源融合测量算法研究
- 批准号:12363010
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
使用FAST开展河外中性氢吸收线普查
- 批准号:12373011
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的射电脉冲星搜索和候选识别的深度学习方法研究
- 批准号:12373107
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
基于FAST观测的重复快速射电暴的统计和演化研究
- 批准号:12303042
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用FAST漂移扫描多科学目标同时巡天宽带谱线数据研究星系中性氢质量函数
- 批准号:12373012
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST望远镜及超级计算的脉冲星深度搜寻和研究
- 批准号:12373109
- 批准年份:2023
- 资助金额:55.00 万元
- 项目类别:面上项目
基于FAST高灵敏度和高谱分辨中性氢数据的暗星系的系统搜寻与研究
- 批准号:12373001
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
基于FAST的纳赫兹引力波研究
- 批准号:LY23A030001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Mem-Fast Membranes as Enablers for Future Biorefineries: from Fabrication to Advanced Separation Technologies
Mem-Fast 膜作为未来生物精炼的推动者:从制造到先进的分离技术
- 批准号:
EP/Y032004/1 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Research Grant
Model order reduction for fast phase-field fracture simulations
快速相场断裂模拟的模型降阶
- 批准号:
EP/Y002474/1 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Research Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Continuing Grant
CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
- 批准号:
2412285 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
- 批准号:
24K08582 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Luminescent Organometallic Complexes with Fast Radiative Rates
具有快速辐射速率的发光有机金属配合物
- 批准号:
2348784 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Continuing Grant
CAREER: Understanding Radiation Belt Electron Fast, Deep Injections in the Inner Magnetosphere
职业:了解辐射带电子在内磁层的快速、深层注入
- 批准号:
2338125 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Continuing Grant
CAREER: Fast coherent and incoherent control of atomic ions in scalable platforms
职业:在可扩展平台中对原子离子进行快速相干和非相干控制
- 批准号:
2338897 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Continuing Grant
SBIR Phase I: An Interplanetary Smallsat for Fast Connectivity, Navigation, and Positioning
SBIR 第一阶段:用于快速连接、导航和定位的行星际小型卫星
- 批准号:
2322390 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Standard Grant
Fast hybrid mass spectrometer for complexome analyses
用于复杂组分析的快速混合质谱仪
- 批准号:
543577782 - 财政年份:2024
- 资助金额:
$ 99.44万 - 项目类别:
Major Research Instrumentation