Fundamental principles, limits, and function of ultrafast motion in single cell organisms
单细胞生物超快运动的基本原理、限制和功能
基本信息
- 批准号:1817334
- 负责人:
- 金额:$ 79.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Contrary to popular notion, the fastest movements in biology are not exhibited by large, multicellular animals such as a sprinting cheetahs or Usain Bolt, but by obscure, tiny microscopic single cell organisms. How a seemingly simple cell may generate extraordinary power and speed, without muscles, remains an open question. To address this critical knowledge gap, this project will study an extreme unicellular organism (Spirostomum ambiguum) that harnesses poorly understood molecular motors, springs and latches to achieve some of the fastest and most powerful movements in nature. In addition to advancing our knowledge of cell biology, insights from this project holds potential for a breakthrough in nanoscale engineering, including design of powerful micro-robots. The PI will involve young scientists across all levels in cell biophysics research including K-12, undergraduate and under-represented minority students in the Atlanta area. The PI will also host high-school summer interns in partnership with Lambert High School. Research findings and scientific discoveries will be shared with the broader public through popular media outlets including, popular media, YouTube, and the local Atlanta Science Festival. Spirostomum is a relatively large protozoan, which moves via a controllable-triggered myoneme. It is an excellent model system to understand fundamental questions of achieving extraordinary power amplification at the scale of a single cell. The proposed research will integrate tools and techniques from biology, physics and mathematics to develop a multi-scale framework that establishes: i) the governing principles for force generation through calcium-based supramolecular protein networks (i.e., myonemes); ii) the physical limits on speed imposed by both cellular material properties and viscous energetic dissipation to environment; and iii), collective hydrodynamic communication and sensing through ultra fast group contractions in single cells.This project is jointly funded by Molecular and Cellular Biosciences and the Physics of Living SystemsThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与流行的观念相反,生物学中最快的运动并不是由大型的多细胞动物(如短跑猎豹或尤塞恩博尔特)展示的,而是由模糊的微小的单细胞生物体展示的。一个看似简单的细胞如何在没有肌肉的情况下产生非凡的力量和速度,仍然是一个悬而未决的问题。为了解决这一关键的知识差距,该项目将研究一种极端的单细胞生物(Spirostomum ambiguum),它利用人们知之甚少的分子马达、弹簧和闩锁来实现自然界中最快、最强大的运动。除了推进我们对细胞生物学的了解外,该项目的见解还可能在纳米级工程方面取得突破,包括设计强大的微型机器人。PI将涉及细胞生物物理学研究的各个层次的年轻科学家,包括K-12,本科生和亚特兰大地区代表性不足的少数民族学生。PI还将与兰伯特高中合作举办高中暑期实习生。研究成果和科学发现将通过流行媒体与更广泛的公众分享,包括流行媒体,YouTube和当地的亚特兰大科学节。Spirostomum是一种相对较大的原生动物,通过可触发的肌丝移动。 这是一个很好的模型系统,以了解在单个细胞的规模实现非凡的功率放大的基本问题。拟议的研究将整合生物学,物理学和数学的工具和技术,以开发一个多尺度框架,该框架建立:i)通过基于钙的超分子蛋白质网络产生力的控制原则(即,myonemes); ii)由多孔材料性质和粘性能量耗散到环境中两者对速度施加的物理限制;和iii),通过单个细胞中的超快速群体收缩进行集体流体动力学通信和传感。该项目由分子和细胞生物科学以及生命系统物理学共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Amorphous entangled active matter
非晶态缠结活性物质
- DOI:10.1039/d2sm01573k
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Savoie, William;Tuazon, Harry;Tiwari, Ishant;Bhamla, M. Saad;Goldman, Daniel I.
- 通讯作者:Goldman, Daniel I.
Oxygenation-Controlled Collective Dynamics in Aquatic Worm Blobs
水生蠕虫斑点中氧合控制的集体动力学
- DOI:10.1093/icb/icac089
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Tuazon, Harry;Kaufman, Emily;Goldman, Daniel I.;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
Collective intercellular communication through ultra-fast hydrodynamic trigger waves
- DOI:10.1038/s41586-019-1387-9
- 发表时间:2019-07-25
- 期刊:
- 影响因子:64.8
- 作者:Mathijssen, Arnold J. T. M.;Culver, Joshua;Prakash, Manu
- 通讯作者:Prakash, Manu
Emergent Collective Locomotion in an Active Polymer Model of Entangled Worm Blobs
- DOI:10.3389/fphy.2021.734499
- 发表时间:2021-09-30
- 期刊:
- 影响因子:3.1
- 作者:Nguyen, Chantal;Ozkan-Aydin, Yasemin;Peleg, Orit
- 通讯作者:Peleg, Orit
A 3D-printed hand-powered centrifuge for molecular biology
- DOI:10.1371/journal.pbio.3000251
- 发表时间:2019-05-01
- 期刊:
- 影响因子:9.8
- 作者:Byagathvalli, Gaurav;Pomerantz, Aaron;Bhamla, M. Saad
- 通讯作者:Bhamla, M. Saad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saad Bhamla其他文献
<em>De novo</em> ATP-independent contractile protein network
- DOI:
10.1016/j.bpj.2023.11.3261 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Xiangting Lei;Carlos Floyd;Tuhin Charkbortty;Scott M. Coyle;Jerry E. Honts;Aaron Dinner;Suriyanarayanan Vaikuntanathan;Saad Bhamla - 通讯作者:
Saad Bhamla
Epineuston vortex recapture enhances thrust in tiny water skaters
Epineuston 涡流重新捕获增强了小型滑水者的推力
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pankaj Rohilla;Johnathan N. O’Neil;Chandan Bose;Victor M. Ortega;Daehyun Choi;Saad Bhamla - 通讯作者:
Saad Bhamla
Saad Bhamla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saad Bhamla', 18)}}的其他基金
Collaborative Research: Ideas Lab: RNA-encoded Molecular Memory (REMM)
合作研究:创意实验室:RNA 编码的分子记忆 (REMM)
- 批准号:
2243698 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
IRES Track1: In-situ Jungle Biomechanics Laboratory (JBL) Research Experience in the Amazon Rainforest
IRES Track1:亚马逊雨林原位丛林生物力学实验室 (JBL) 研究经验
- 批准号:
2246236 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
Tools4Cells: EAGER: A Molecular Pursuit for the Engram: Microfluidic temporal transcriptomics for single cell learning
Tools4Cells:EAGER:对印迹的分子追求:用于单细胞学习的微流控时间转录组学
- 批准号:
2337788 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and controlling force generation by a centrin-based contractile system
合作研究:理解和控制基于中心蛋白的收缩系统产生的力
- 批准号:
2313724 - 财政年份:2023
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: Programmed Stimuli-responsive Mesoscale Polymers Inspired by Worm Blobs as Emergent Super-Materials
EAGER/合作研究:受蠕虫斑点启发的程序化刺激响应介观尺度聚合物作为新兴超级材料
- 批准号:
2218382 - 财政年份:2022
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
I-Corps: Delivery system for gene-based medicines
I-Corps:基因药物输送系统
- 批准号:
2120291 - 财政年份:2021
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
CAREER: Fast, Furious and Fantastic Beasts: Integrative principles, biomechanics and physical limits of impulsive motion in ultrafast organisms
职业:《速度与激情》和《神奇动物在哪里》:超快生物体中脉冲运动的综合原理、生物力学和物理极限
- 批准号:
1941933 - 财政年份:2020
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
Collaborative Research: CYBORG cells: Modular integration of synthetic organelles into living cells
合作研究:CYBORG 细胞:将合成细胞器模块化整合到活细胞中
- 批准号:
1935262 - 财政年份:2019
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
相似国自然基金
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
- 批准号:51778175
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
- 批准号:
2339483 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Research Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Principles of Intrinsically Disordered Proteins
职业:本质无序蛋白质的进化原理
- 批准号:
2338129 - 财政年份:2024
- 资助金额:
$ 79.85万 - 项目类别:
Continuing Grant