CAREER: Robust Causal And Statistical Inference In High Dimensional Structured Systems With Hidden Variables
职业:具有隐藏变量的高维结构化系统中的稳健因果和统计推断
基本信息
- 批准号:1942239
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Understanding causes and effects is crucial in empirical science, however observed associations do not always have clear causal explanations. For instance, hospital patients who were prescribed antibiotics also tend to suffer from opportunistic infections, though we don’t expect antibiotics to cause infections. The likely explanation in this case is that an early presence of an infectious agent caused the latter infection, and the doctor prescribing antibiotics. A key obstacle to finding valid cause-effect relationships from data is the presence of hidden but causally relevant variables, like the infectious agent above. This project aims to develop new methods for drawing valid causal inferences in datasets with hidden variables while avoiding known pitfalls of existing approaches. Aside from its role in data analysis, causal literacy is an important skill for making informed choices as citizens and consumers. The investigator aims to promote this skill by incorporating causal methods into existing data science courses at Johns Hopkins University, developing a new course that will teach methods for detecting misunderstandings of causal claims, and developing a tutorial aimed at bridging the gap between machine learning and statistics in discussing and working on causal inference.Directed acyclic graphs (DAGs) are an elegant method for reasoning about fully observed causal systems. The proposed research aims to provide a new formalism for causal systems with hidden variables that retains the advantages of DAGs, while dispensing with the disadvantages of representing hidden variables directly. This formalism captures all equality constraints in the observed marginal distribution via a regular model of a mixed graph. Success in the proposed research will significantly advance understanding of all major tasks in causal systems with hidden variables: identification, estimation, and computationally efficient probabilistic calculations. As a test bed for methodological developments, the investigator will use a dataset of electronic health records obtained in partnership with the Malone Center for Engineering in Healthcare and the Johns Hopkins Department of Surgery.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
理解因果关系在经验科学中至关重要,然而观察到的关联并不总是有明确的因果解释。例如,医院里开了抗生素的病人也容易受到机会性感染的影响,尽管我们不认为抗生素会引起感染。在这种情况下,可能的解释是,早期存在的传染性病原体导致了后一次感染,医生开了抗生素。 从数据中找到有效的因果关系的一个关键障碍是存在隐藏但因果相关的变量,如上面的感染因子。该项目旨在开发新的方法,在隐藏变量的数据集中进行有效的因果推理,同时避免现有方法的已知缺陷。除了在数据分析中的作用外,因果素养是公民和消费者做出知情选择的重要技能。 调查人员旨在通过将因果方法纳入约翰霍普金斯大学现有的数据科学课程来促进这一技能,开发一门新课程,将教授检测因果索赔误解的方法,并开发了一个教程,旨在弥合机器学习和统计之间的差距,讨论和研究因果推理。有向无环图(DAG)是一个优雅的方法推理充分观察因果系统。 拟议的研究旨在提供一个新的形式主义的因果系统的隐变量,保留了DAG的优点,同时免除直接表示隐变量的缺点。 这种形式主义通过混合图的正则模型捕获了所观察到的边际分布中的所有等式约束。 在拟议的研究中的成功将显着推进因果系统中的所有主要任务的理解与隐藏变量:识别,估计和计算效率的概率计算。作为方法学发展的测试平台,研究者将使用与马龙医疗保健工程中心和约翰霍普金斯外科部合作获得的电子健康记录数据集。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Causal Discovery in Linear Latent Variable Models Subject to Measurement Error
- DOI:10.48550/arxiv.2211.03984
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Yuqin Yang;AmirEmad Ghassami;Mohamed S. Nafea;N. Kiyavash;Kun Zhang;I. Shpitser
- 通讯作者:Yuqin Yang;AmirEmad Ghassami;Mohamed S. Nafea;N. Kiyavash;Kun Zhang;I. Shpitser
Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
一类双鲁棒泛函的极小极大核机器学习及其在近端因果推理中的应用
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Amiremad Ghassami, Andrew Ying
- 通讯作者:Amiremad Ghassami, Andrew Ying
The Lauritzen-Chen Likelihood For Graphical Models
- DOI:
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:I. Shpitser
- 通讯作者:I. Shpitser
Partial Identifiability in Discrete Data with Measurement Error
具有测量误差的离散数据的部分可辨识性
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Noam Finkelstein;Roy Adams;Suchi Saria;Ilya Shpitser
- 通讯作者:Ilya Shpitser
Path dependent structural equation models
路径相关结构方程模型
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ranjani Srinivasan;Jaron J. R. Lee;Rohit Bhattacharya;Ilya Shpitser
- 通讯作者:Ilya Shpitser
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Shpitser其他文献
Ilya Shpitser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Shpitser', 18)}}的其他基金
FAI: causal and semi-parametric inference for explanations of disparities and disparity-correcting modeling
FAI:用于解释视差和视差校正建模的因果和半参数推理
- 批准号:
2040804 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
FAI: Quantifying Direct and Indirect Consequences of Racial Disparities in Outcomes Following Cardiac Surgery
FAI:量化心脏手术后结果中种族差异的直接和间接后果
- 批准号:
1939675 - 财政年份:2020
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Fellowship
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
- 批准号:
2336840 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
- 批准号:
2330377 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Research on Robust Multi-Person Gait Recognition Based on the Combination of Human Mesh Model and Silhouette
基于人体网格模型与剪影相结合的鲁棒多人步态识别研究
- 批准号:
24K20794 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Robust, Fair, and Culturally Aware Commonsense Reasoning in Natural Language
职业:用自然语言进行稳健、公平和具有文化意识的常识推理
- 批准号:
2339746 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
- 批准号:
2339898 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
- 批准号:
2337375 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant