FAI: causal and semi-parametric inference for explanations of disparities and disparity-correcting modeling
FAI:用于解释视差和视差校正建模的因果和半参数推理
基本信息
- 批准号:2040804
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As learning algorithms become ubiquitous in our lives, many have expressed concerns about the potentially harmful biases and disparities that may arise when these algorithms use sensitive features in the data --- such as race, age, gender, or health --- inappropriately. This project aims to understand and correct for these disparities using causal inference, which aims to use data to quantify cause--effect relationships. Such relationships can be uncovered by trying to predict the change in an effect when a cause variable takes on a different value than one it usually attains. For example, ethnic disparities in health outcomes may arise from different rates of pre-existing comorbidities in different ethnic groups, or from differences in care arising from implicit biases, or from some other mechanisms unmeasured in the data. The indirect effect on health outcome of group-dependent rates of comorbidities can be conceptualized as follows. Measure the health outcomes in patients from ethnic Group A, then use a reliable model to predict outcomes for the same patients with comorbidity rates artificially set to that of ethnic Group B, while leaving everything else the same, and compare the two. Disparity between the measured and predicted health outcomes point to differing comorbidity rates as the cause. Similarly, a direct effect could be revealed by comparing health outcomes in patients from ethnic Group A with predicted health outcomes in that same group with all variables participating in known indirect mechanisms giving rise to disparities left intact, but the variable indicating ethnicity changed to that for Group B. Such a direct effect may be viewed as the proportion of the overall effect of ethnicity on the outcome not explained by indirect effects. This project aims to develop methods that use data to predict how such hypothetical comparisons would turn out, use the results to better understand mechanisms of disparities in healthcare, and build predictive models that are aware, and can correct for undesirable mechanisms of disparity.In this project, the investigator aims to address conceptual, methodological, and practical gaps in explaining disparities via their causal mechanisms and building models and tools that can correct for mechanisms deemed impermissible. An example of such a mechanism is a direct dependence of a decision or outcome on perceived race or gender. The investigator will develop methods that can assess the extent to which disparities in outcomes with respect to a sensitive feature can be attributed to distinct causal pathways. To address challenges causal inference faces in complex high-dimensional settings, the investigator will adopt modern semi-parametric methods that are able to use machine learning models while retaining desirable properties of robustness and rapids rates of convergence. In addition, the investigator will develop a novel combination of methods from causal and semi-parametric inference, and constrained optimization to create predictive models and decision support tools that use data efficiently while preventing impermissible mechanisms of disparity from operating, for instance by ensuring that perceived ethnicity has no direct effect on outcomes or decisions made. The approach will be applied to quantifying disparities and building decision support tools using a complex data set obtained from electronic health records at Johns Hopkins University. All methods will be implemented in an open-source software package Ananke.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着学习算法在我们的生活中变得无处不在,许多人对这些算法不适当地使用数据中的敏感特征(如种族、年龄、性别或健康状况)时可能出现的潜在有害偏见和差异表示担忧。本项目旨在使用因果推理来理解和纠正这些差异,其目的是使用数据来量化因果关系。当一个原因变量的值与它通常达到的值不同时,可以通过尝试预测效果的变化来揭示这种关系。例如,健康结果方面的种族差异可能是由于不同种族群体先前存在的合并症的比率不同,或由于隐性偏见引起的护理差异,或由于数据中未测量的一些其他机制。合并症的群体依赖率对健康结果的间接影响可以概念化如下。测量A族患者的健康结果,然后使用一个可靠的模型来预测相同患者的结果,人为地将合并症率设定为B族患者的合并症率,而其他一切保持不变,并将两者进行比较。测量和预测的健康结果之间的差异表明,不同的合并症发生率是原因。同样,将a族裔患者的健康结果与同一族裔患者的预测健康结果进行比较,可以揭示直接影响,其中所有参与已知间接机制的变量导致差异保持不变,但表明族裔的变量变为b族裔的变量。这种直接影响可被视为族裔对结果的总体影响所占比例,而非间接影响所解释。该项目旨在开发方法,利用数据预测这种假设比较的结果,利用结果更好地理解医疗保健中的差异机制,并建立预测模型,以意识到并能够纠正不希望看到的差异机制。在这个项目中,研究者的目标是解决概念上、方法上和实践上的差距,通过因果机制来解释差异,并建立模型和工具来纠正被认为不允许的机制。这种机制的一个例子是一个决定或结果直接依赖于感知到的种族或性别。研究者将开发方法,以评估与敏感特征相关的结果差异可归因于不同因果途径的程度。为了解决复杂高维环境下因果推理面临的挑战,研究者将采用现代半参数方法,该方法能够使用机器学习模型,同时保持理想的鲁棒性和快速收敛率。此外,研究者将开发一种新的方法组合,从因果和半参数推理,以及约束优化,以创建预测模型和决策支持工具,有效地使用数据,同时防止不允许的差异机制运作,例如,通过确保感知的种族对结果或决策没有直接影响。该方法将应用于利用从约翰霍普金斯大学电子健康记录中获得的复杂数据集来量化差异和建立决策支持工具。所有方法都将在开源软件包Ananke中实现。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Proximal mediation analysis
近端中介分析
- DOI:10.1093/biomet/asad015
- 发表时间:2023
- 期刊:
- 影响因子:2.7
- 作者:Dukes, Oliver;Shpitser, Ilya;Tchetgen Tchetgen, Eric J
- 通讯作者:Tchetgen Tchetgen, Eric J
Optimal Training of Fair Predictive Models
公平预测模型的优化训练
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Razieh Nabi, Daniel Malinsky
- 通讯作者:Razieh Nabi, Daniel Malinsky
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ilya Shpitser其他文献
Entropic Inequality Constraints from e-separation Relations in Directed Acyclic Graphs with Hidden Variables
隐变量有向无环图中e分离关系的熵不等式约束
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Noam Finkelstein;Beata Zjawin;Elie Wolfe;Ilya Shpitser;Robert W. Spekkens - 通讯作者:
Robert W. Spekkens
Partial Identifiability in Discrete Data with Measurement Error
具有测量误差的离散数据的部分可辨识性
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Noam Finkelstein;Roy Adams;Suchi Saria;Ilya Shpitser - 通讯作者:
Ilya Shpitser
Path dependent structural equation models
路径相关结构方程模型
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ranjani Srinivasan;Jaron J. R. Lee;Rohit Bhattacharya;Ilya Shpitser - 通讯作者:
Ilya Shpitser
Ilya Shpitser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ilya Shpitser', 18)}}的其他基金
FAI: Quantifying Direct and Indirect Consequences of Racial Disparities in Outcomes Following Cardiac Surgery
FAI:量化心脏手术后结果中种族差异的直接和间接后果
- 批准号:
1939675 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
CAREER: Robust Causal And Statistical Inference In High Dimensional Structured Systems With Hidden Variables
职业:具有隐藏变量的高维结构化系统中的稳健因果和统计推断
- 批准号:
1942239 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
相似国自然基金
使用倾向分(Propensity Score)和主分层(Principal Stratification)进行因果推断
- 批准号:10401003
- 批准年份:2004
- 资助金额:11.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Causal contributions of deep prefrontal-amygdala circuits to social cognition
深层前额叶杏仁核回路对社会认知的因果贡献
- 批准号:
MR/Y010477/1 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Fellowship
CAREER: Temporal Causal Reinforcement Learning and Control for Autonomous and Swarm Cyber-Physical Systems
职业:自治和群体网络物理系统的时间因果强化学习和控制
- 批准号:
2339774 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CAREER: Causal Modeling for Data Quality and Bias Mitigation
职业:数据质量和偏差缓解的因果建模
- 批准号:
2340124 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
- 批准号:
2337612 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
- 批准号:
MR/Z503769/1 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Research Grant
CAREER: From Fragile to Fortified: Harnessing Causal Reasoning for Trustworthy Machine Learning with Unreliable Data
职业:从脆弱到坚固:利用因果推理,利用不可靠的数据实现值得信赖的机器学习
- 批准号:
2337529 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
Causal relationship between taste and smell perception and eating behaviour
味觉和嗅觉与饮食行为之间的因果关系
- 批准号:
DE240100014 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Discovery Early Career Researcher Award
SaTC: CORE: Medium: Testing the causal influence of social media on well-being and animosity
SaTC:核心:中:测试社交媒体对幸福感和敌意的因果影响
- 批准号:
2334148 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
SBIR Phase I: Knowledge Graph-powered Information Retrieval and Causal Inference
SBIR 第一阶段:知识图谱驱动的信息检索和因果推理
- 批准号:
2335357 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Identifying causal pathways in cerebral small vessel disease
确定脑小血管疾病的因果途径
- 批准号:
MR/Y014634/1 - 财政年份:2024
- 资助金额:
$ 39.99万 - 项目类别:
Research Grant