Probabilistic Query Processing in Uncertain Spatio-temporal Data
不确定时空数据中的概率查询处理
基本信息
- 批准号:240143479
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2013
- 资助国家:德国
- 起止时间:2012-12-31 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the wide availability of satellite, RFID, GPS, and sensor technologies, spatio-temporal data - data incorporating both location and time information - can be collected in a massive scale. Datasets containing such information are therefore becoming increasingly large, rich, complex, and ubiquitous. The efficient management of such data is of great interest in a plethora of application domains. However, due to physical limitations of sensing devices and the time-discrete nature of measurements, such data is inherently imprecise.The goal of this project is to investigate efficient and effective methods for modelling, querying and analyzing uncertain spatio-temporal data. In this project, we envision to develop query methods that are able to maximize the reliability of query and analysis results. This aim can be reached by trying to incorporate the complete information that can be extracted from potential uncertain spatio-temporal data into the query process. Thereby, the complexity of the description of the inherent uncertainty, the incorporation of dependencies between entities as well as coping with huge amount of data are the most critical challenges. We try to cope with these problems by using stochastic processes to model uncertain movement of objects in space. Based on such models, we plan to develop first algorithms and techniques to support efficiently the most important spatio-temporal query predicates in a probabilistic way, such as range queries, nearest-neighbor queries and intersection queries. Our main challenge is to return possible results associated with the corresponding probabilities of being a result. The results can then be returned to the user, sorted in descending order by their probability value, giving the user important information about the reliability of the returned results. In addition, data mining solutions, such as clustering and pattern mining for uncertain spatio-temporal data will be investigated. Here, too, we want to directly incorporate models for uncertainty in order to return results with an associated grade of confidence.We plan to reach these goals by applying analytical methods to obtain algorithms to compute the probability based on the uncertainty model. In cases where analytical methods fail due to computational complexity, we will research numeric approaches to approximate the result probabilities, while giving guarantees on the quality of these approximations.
随着卫星、RFID、GPS和传感器技术的广泛应用,时空数据(包含位置和时间信息的数据)可以大规模收集。因此,包含这些信息的数据集变得越来越大、丰富、复杂和无处不在。这些数据的有效管理在大量的应用领域中具有很大的意义。然而,由于传感设备的物理限制和测量的时间离散性,这样的数据本质上是不精确的。本项目的目标是研究高效和有效的方法来建模,查询和分析不确定的时空数据。在这个项目中,我们设想开发的查询方法,能够最大限度地提高查询和分析结果的可靠性。这个目标可以通过尝试将完整的信息,可以从潜在的不确定时空数据提取到查询过程中。因此,描述固有不确定性的复杂性,实体之间的依赖关系的合并以及处理大量数据是最关键的挑战。我们试图用随机过程来模拟空间物体的不确定运动来科普这些问题。基于这样的模型,我们计划开发第一个算法和技术,以有效地支持最重要的时空查询谓词的概率方式,如范围查询,最近邻查询和交集查询。我们的主要挑战是返回与结果的相应概率相关联的可能结果。然后可以将结果返回给用户,按其概率值降序排序,为用户提供有关返回结果可靠性的重要信息。此外,数据挖掘解决方案,如聚类和模式挖掘不确定的时空数据将进行研究。在这里,我们也希望直接结合不确定性模型,以便返回具有相关置信度的结果。我们计划通过应用分析方法来获得基于不确定性模型计算概率的算法来实现这些目标。在分析方法由于计算复杂性而失败的情况下,我们将研究数值方法来近似结果概率,同时保证这些近似的质量。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Knowledge-Enriched Route Computation
- DOI:10.1007/978-3-319-22363-6_9
- 发表时间:2015-08
- 期刊:
- 影响因子:0
- 作者:Georgios Skoumas;Klaus Arthur Schmid;Gregor Jossé;Matthias Schubert;M. Nascimento;Andreas Züfle;M. Renz-M
- 通讯作者:Georgios Skoumas;Klaus Arthur Schmid;Gregor Jossé;Matthias Schubert;M. Nascimento;Andreas Züfle;M. Renz-M
Handling Uncertainty in Geo-Spatial Data
- DOI:10.1109/icde.2017.212
- 发表时间:2017-04
- 期刊:
- 影响因子:0
- 作者:Andreas Züfle;Goce Trajcevski;D. Pfoser;M. Renz;Matthew T. Rice;Timothy F. Leslie;P. Delamater;Tobias Emrich
- 通讯作者:Andreas Züfle;Goce Trajcevski;D. Pfoser;M. Renz;Matthew T. Rice;Timothy F. Leslie;P. Delamater;Tobias Emrich
Efficient Information Flow Maximization in Probabilistic Graphs
- DOI:10.1109/tkde.2017.2780123
- 发表时间:2018-05-01
- 期刊:
- 影响因子:8.9
- 作者:Frey, Christian;Zufle, Andreas;Renz, Matthias
- 通讯作者:Renz, Matthias
Indexing multi-metric data
索引多指标数据
- DOI:10.1109/icde.2016.7498318
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Franzke;Maximilian;Tobias Emrich;Andreas Züfle;Matthias Renz
- 通讯作者:Matthias Renz
Uncertain Voronoi cell computation based on space decomposition
基于空间分解的不确定Voronoi单元计算
- DOI:10.1007/978-3-319-22363-6_6
- 发表时间:2017
- 期刊:
- 影响因子:2
- 作者:Emrich;Tobias;Klaus Arthur Schmid;Andreas Züfle;Matthias Renz;Reynold Cheng
- 通讯作者:Reynold Cheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Matthias Renz其他文献
Professor Dr. Matthias Renz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Advanced Security and Privacy Techniques for Secure Big Data Query, Sharing and Processing
用于安全大数据查询、共享和处理的先进安全和隐私技术
- 批准号:
RGPIN-2022-03244 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Declarative Query Processing Over Real Time Video Streams
实时视频流上的声明式查询处理
- 批准号:
RGPIN-2020-07238 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Data-Parallel Algorithms for Efficient Query Processing on Modern Hardware
现代硬件上高效查询处理的数据并行算法
- 批准号:
RGPIN-2020-06639 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Advancing Analytical Query Processing with Urban Trajectory Data
利用城市轨迹数据推进分析查询处理
- 批准号:
DP220101434 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Projects
Structured Video Query Processing with Spatiotemporal Constraints
具有时空约束的结构化视频查询处理
- 批准号:
RGPIN-2022-04623 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Fast Query Processing for Large Scientific Databases
大型科学数据库的快速查询处理
- 批准号:
22K17894 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Declarative Query Processing Over Real Time Video Streams
实时视频流上的声明式查询处理
- 批准号:
RGPIN-2020-07238 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Efficient and Scalable Similarity Query Processing on Big Streaming Graphs
大流图上的高效且可扩展的相似性查询处理
- 批准号:
DP210101393 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Projects
Data-Parallel Algorithms for Efficient Query Processing on Modern Hardware
现代硬件上高效查询处理的数据并行算法
- 批准号:
RGPIN-2020-06639 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual