Advanced Security and Privacy Techniques for Secure Big Data Query, Sharing and Processing

用于安全大数据查询、共享和处理的先进安全和隐私技术

基本信息

  • 批准号:
    RGPIN-2022-03244
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The widespread application of information and communication technology has continuously promoted the explosive growth of data in various fields. It has been estimated that approximately 2.5 quintillion bytes of data are produced each day, and such data play a vital role in decision making, business planning, knowledge discovery, etc. Obviously, this situation has resulted in continuing interest in big data analytics. Nevertheless, while big data brings us many opportunities, it also introduces new challenges, especially security and privacy challenges. If we do not pay attention to big data security, false injected data would make big data driven applications useless. On the other hand, most valuable data are usually personal and sensitive, if we do not pay attention to big data privacy, data owners will have no confidence in sharing their data. Therefore, in order to adapt Canada to the big data era, big data security and privacy should never be an afterthought. Instead, Canada should prepare not only a new generation of data engineers skilled in big data, but also reliable and trustworthy platforms to ensure secure and privacy-preserving data capture, curation, storage, search, and sharing in big data era. The proposed research is envisioned to address security and privacy challenges in big data era, particularly considering the security and privacy threats in complex big data query, sharing, and processing, which have not yet been fully exploited in previously reported studies. The main objective of this proposed research is to investigate a set of advanced security and privacy techniques by using an interdisciplinary approach, i.e., combining cryptography, advanced data structures, and data mining techniques, to secure data query, sharing, and processing in various big data applications. In particular, this proposal will address significant technical challenges arising from "4V" (Volume, Velocity, Variety, and Veracity) characteristics of big data, in the following four thrusts: i) develop efficient and privacy-preserving similarity-based query techniques to balance utility, privacy, and efficiency in eHealthcare big data systems; ii) develop efficient and privacy-preserving "skyline variants" query techniques to fit various real scenarios' needs; iii) design privacy-preserving query techniques over encrypted graphs for preserving access pattern privacy; and iv) develop reliable, privacy-preserving, and access controllable frameworks to secure data sharing and processing in big data digital twin systems. This proposed research will draw intensively and extensively on the research expertise of the Principal Investigator, as well as the strong supports from the Faculty of Computer Science, University of New Brunswick. The cutting-edge research will generate new ideas and knowledge for the evolution of big data security, enable HQP training and provide new secure and privacy-preserving big data solutions for Canada.
信息通信技术的广泛应用,不断推动各领域数据的爆发式增长。据估计,每天大约产生2.5万亿字节的数据,这些数据在决策制定、业务规划、知识发现等方面发挥着至关重要的作用。显然,这种情况导致了人们对大数据分析的持续兴趣。然而,大数据在给我们带来许多机遇的同时,也带来了新的挑战,尤其是安全和隐私方面的挑战。如果不重视大数据安全,虚假注入的数据会让大数据驱动的应用毫无用处。另一方面,大多数有价值的数据通常都是个人的、敏感的数据,如果我们不重视大数据的隐私,数据所有者就没有信心分享他们的数据。因此,为了让加拿大适应大数据时代,大数据的安全和隐私绝不应该是事后诸事。相反,加拿大不仅应该准备新一代精通大数据的数据工程师,还应该准备可靠和值得信赖的平台,以确保在大数据时代安全、保护隐私的数据捕获、管理、存储、搜索和共享。本研究旨在解决大数据时代的安全和隐私挑战,特别是考虑到复杂的大数据查询、共享和处理中的安全和隐私威胁,这些威胁在以往的研究中尚未得到充分利用。本研究的主要目的是通过跨学科的方法,即结合密码学、高级数据结构和数据挖掘技术,研究一套先进的安全和隐私技术,以确保各种大数据应用中的数据查询、共享和处理。特别是,该提案将解决大数据“4V”(体积、速度、种类和准确性)特征所带来的重大技术挑战,包括以下四个重点:i)开发高效且保护隐私的基于相似性的查询技术,以平衡电子医疗大数据系统中的效用、隐私和效率;Ii)开发高效且保护隐私的“天际线变体”查询技术,以适应各种真实场景的需求;Iii)在加密图上设计保护隐私的查询技术,以保护访问模式的隐私;iv)开发可靠、隐私保护和访问可控的框架,以确保大数据数字孪生系统中的数据共享和处理。这项拟议的研究将集中和广泛地利用首席研究员的研究专长,并得到新不伦瑞克大学计算机科学学院的大力支持。这项前沿研究将为大数据安全的发展产生新的想法和知识,使HQP培训成为可能,并为加拿大提供新的安全和保护隐私的大数据解决方案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lu, Rongxing其他文献

A Secure Handshake Scheme with Symptoms-Matching for mHealthcare Social Network
  • DOI:
    10.1007/s11036-010-0274-2
  • 发表时间:
    2011-12-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Lu, Rongxing;Lin, Xiaodong;Shen, Xuemin
  • 通讯作者:
    Shen, Xuemin
An Efficient Merkle-Tree-Based Authentication Scheme for Smart Grid
一种基于默克尔树的智能电网高效认证方案
  • DOI:
    10.1109/jsyst.2013.2271537
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Li, Hongwei;Lu, Rongxing;Shen, Xuemin (Sherman)
  • 通讯作者:
    Shen, Xuemin (Sherman)
New (t,n) threshold directed signature scheme with provable security
  • DOI:
    10.1016/j.ins.2007.07.025
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
    8.1
  • 作者:
    Lu, Rongxing;Lin, Xiaodong;Liang, Xiaohui
  • 通讯作者:
    Liang, Xiaohui
5G Vehicle-to-Everything Services: Gearing Up for Security and Privacy
  • DOI:
    10.1109/jproc.2019.2948302
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
    20.6
  • 作者:
    Lu, Rongxing;Zhang, Lan;Fang, Yuguang
  • 通讯作者:
    Fang, Yuguang
Achieve Privacy-Preserving Priority Classification on Patient Health Data in Remote eHealthcare System
  • DOI:
    10.1109/access.2019.2891775
  • 发表时间:
    2019-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Wang, Guoming;Lu, Rongxing;Guan, Yong Liang
  • 通讯作者:
    Guan, Yong Liang

Lu, Rongxing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lu, Rongxing', 18)}}的其他基金

Advanced Security and Privacy Technologies for Data Protection: Analysis, Design and Application in Big Data Era
先进的数据保护安全与隐私技术:大数据时代的分析、设计与应用
  • 批准号:
    RGPIN-2017-04009
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Security and Privacy Technologies for Data Protection: Analysis, Design and Application in Big Data Era
先进的数据保护安全与隐私技术:大数据时代的分析、设计与应用
  • 批准号:
    RGPIN-2017-04009
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Security and Privacy Technologies for Data Protection: Analysis, Design and Application in Big Data Era
先进的数据保护安全与隐私技术:大数据时代的分析、设计与应用
  • 批准号:
    RGPIN-2017-04009
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Security and Privacy Technologies for Data Protection: Analysis, Design and Application in Big Data Era
先进的数据保护安全与隐私技术:大数据时代的分析、设计与应用
  • 批准号:
    RGPIN-2017-04009
  • 财政年份:
    2018
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Security and Privacy Technologies for Data Protection: Analysis, Design and Application in Big Data Era
先进的数据保护安全与隐私技术:大数据时代的分析、设计与应用
  • 批准号:
    RGPIN-2017-04009
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Verifying Security and Privacy of Distributed Applications
职业:验证分布式应用程序的安全性和隐私
  • 批准号:
    2338317
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
GNNs for Network Security (and Privacy) GRAPHS4SEC
用于网络安全(和隐私)的 GNN GRAPHS4SEC
  • 批准号:
    EP/Y036050/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
Travel: NSF Student Travel Grant for 2024 IEEE Symposium on Security and Privacy (IEEE S&P 2024)
旅行:2024 年 IEEE 安全与隐私研讨会 (IEEE S
  • 批准号:
    2419095
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for the Twentieth Symposium on Usable Privacy and Security (SOUPS 2024) and the 33rd USENIX Security Symposium (USENIX Security 2024)
旅行:为第二十届可用隐私和安全研讨会 (SOUPS 2024) 和第 33 届 USENIX 安全研讨会 (USENIX Security 2024) 提供 NSF 学生旅行补助金
  • 批准号:
    2415713
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Grant for 2024 ISOC Symposium on Vehicle Security and Privacy (VehicleSec)
旅行:2024 年 ISOC 车辆安全和隐私研讨会 (VehicleSec) 的 NSF 学生旅行补助金
  • 批准号:
    2419978
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
SPRITE+ 2: The Security, Privacy, Identity and Trust Engagement Networkplus (phase 2).
SPRITE 2:安全、隐私、身份和信任参与网络plus(第2阶段)。
  • 批准号:
    EP/W020408/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
Education DCL: EAGER: Experiential Learning Platform and Curricular Modules for Quantum Computing Security and Privacy Education
教育 DCL:EAGER:量子计算安全和隐私教育的体验式学习平台和课程模块
  • 批准号:
    2335788
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
CAREER: Privacy Preserving Security Analytics: When Security Meets Privacy
职业:隐私保护安全分析:当安全遇到隐私时
  • 批准号:
    2308730
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
SaTC-EDU: EAGER: Developing metaverse-native security and privacy curricula for high school students
SaTC-EDU:EAGER:为高中生开发元宇宙原生安全和隐私课程
  • 批准号:
    2335807
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
Intelligent and Privacy-preserving security solutions for IoT networks
适用于物联网网络的智能且保护隐私的安全解决方案
  • 批准号:
    2890932
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了