CAREER:Electro-Optical Logic Gates Based on Perovskite Phototransistors
职业:基于钙钛矿光电晶体管的电光逻辑门
基本信息
- 批准号:1942558
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NontechnicalThe PI will investigate opto-electronic circuits based on a new class of materials, metal halide perovskites. These materials are semiconductors like silicon, but they can be solution processed at low temperatures. Their electronic and optical properties can also be chemically tuned. The combination of low cost processing and wide variety has led to intense studies of these materials for devices such as solar cells and light emitting diodes. However, they have been scarcely considered to-date for opto-electronic circuits. The opto-electronic properties of perovskites will be studied, and they will be used to make proof-of-principle devices such as phototransistors. These devices will be incorporated into next-generation electronic circuits for applications such as differential amplifiers and optical sensors. They even have promise for neuromorphic circuits inspired by biological nervous systems. The PI will create and distribute videos related to this research via a YouTube channel as a part of this integrated research-education project. The PI will also develop stereoscopic videos compatible with virtual-reality (VR) headsets based on either 3D-rendered environments such as the inside a molecule or filmed in the laboratory. Web-based and desktop interactive 3D teaching applications compatible with VR headsets for education and research are also planned.TechnicalDespite being intensely studied for applications in solar cells and light emitting diodes, metal halide perovskites (MHPs) have to-date scarcely considered for information-processing applications, such as transistors and logic gates. Their high carrier mobility and strong, tunable, absorption properties make them ideal candidates for opto-electronic logic gates. While 2-terminal photodiodes have been employed as optical sensors in many applications, the authors here will restrict detection and amplification to a single device: a three-terminal phototransistor. Despite being poorly understood, phototransistors can potentially detect and process optical signals in a single circuit element, possess a responsivity tunable through the voltage applied to the third (gate) terminal, and can be employed in differential amplifiers. Within this project, the team will undertake a broad set of research activates concerning the optimization and study of MHPs for application in thin-film electronics; in particular, for implementation in phototransistor-based optical NOT gates. Reproducible and predictable MHP-based phototransistors will enable a range of novel devices such as differential amplifiers, mechanically flexible devices, optical polarization sensors, and neuromorphic light sensors. As part of this integrated research-education project, the PI will disseminate videos on topics related to this program of research via a YouTube channel. The PI will also develop and disseminate stereoscopic videos compatible with virtual-reality (VR) headsets based on either 3D-rendered environments (e.g. inside molecules), or filmed inside laboratories / classrooms. Additionally, web-based and desktop interactive 3D teaching applications compatible with VR headsets for education and research will be developed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性 PI 将研究基于新型材料金属卤化物钙钛矿的光电电路。这些材料与硅一样是半导体,但它们可以在低温下进行溶液加工。它们的电子和光学特性也可以通过化学方法进行调整。低成本加工和广泛的多样性相结合,引发了对这些材料用于太阳能电池和发光二极管等器件的深入研究。然而,迄今为止,它们很少被考虑用于光电电路。我们将研究钙钛矿的光电特性,并将其用于制造光电晶体管等原理验证器件。这些器件将被整合到下一代电子电路中,用于差分放大器和光学传感器等应用。他们甚至有望开发出受生物神经系统启发的神经形态电路。作为该综合研究教育项目的一部分,PI 将通过 YouTube 频道创建并分发与该研究相关的视频。 PI 还将开发与基于 3D 渲染环境(例如分子内部)或在实验室拍摄的虚拟现实 (VR) 耳机兼容的立体视频。还计划与用于教育和研究的 VR 耳机兼容的基于网络和桌面的交互式 3D 教学应用程序。 技术尽管人们对太阳能电池和发光二极管的应用进行了深入研究,但金属卤化物钙钛矿 (MHP) 迄今为止很少考虑用于信息处理应用,例如晶体管和逻辑门。它们的高载流子迁移率和强大的可调谐吸收特性使它们成为光电逻辑门的理想选择。虽然二端光电二极管已在许多应用中用作光学传感器,但作者在此将检测和放大限制为单个设备:三端光电晶体管。尽管人们对光电晶体管了解甚少,但光电晶体管可以在单个电路元件中检测和处理光信号,具有可通过施加到第三(栅极)端子的电压调节的响应度,并且可以在差分放大器中使用。在该项目中,该团队将开展一系列广泛的研究活动,涉及薄膜电子器件中 MHP 的优化和研究;特别是用于基于光电晶体管的光学非门的实现。可重复且可预测的基于 MHP 的光电晶体管将使一系列新颖的设备成为可能,例如差分放大器、机械柔性设备、光学偏振传感器和神经形态光传感器。作为该综合研究教育项目的一部分,PI 将通过 YouTube 频道传播与该研究计划相关主题的视频。 PI 还将开发和传播与基于 3D 渲染环境(例如内部分子)或在实验室/教室内拍摄的虚拟现实 (VR) 耳机兼容的立体视频。此外,还将开发与 VR 耳机兼容的基于网络和桌面的交互式 3D 教学应用程序,用于教育和研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying the performance of perovskite retinomorphic sensors
- DOI:10.1088/1361-6463/ac1d10
- 发表时间:2021-11-25
- 期刊:
- 影响因子:3.4
- 作者:Herrera, Cinthya Trujillo;Labram, John G.
- 通讯作者:Labram, John G.
An Organic Retinomorphic Sensor
- DOI:10.1021/acsaelm.1c00955
- 发表时间:2021-12-28
- 期刊:
- 影响因子:4.7
- 作者:Herrera, Cinthya Trujillo;Labram, John G.
- 通讯作者:Labram, John G.
Role of the Blend Ratio in Polymer:Fullerene Phototransistors
- DOI:10.1021/acsaelm.0c00445
- 发表时间:2020-07-28
- 期刊:
- 影响因子:4.7
- 作者:Herrera, Cinthya Trujillo;Hong, Min Ji;Labram, John G.
- 通讯作者:Labram, John G.
Inter‐Sample and Intra‐Sample Variability in Electronic Properties of Methylammonium Lead Iodide
- DOI:10.1002/adfm.202101843
- 发表时间:2021-03
- 期刊:
- 影响因子:19
- 作者:M. J. Hong;J. Labram
- 通讯作者:M. J. Hong;J. Labram
A perovskite retinomorphic sensor
- DOI:10.1063/5.0030097
- 发表时间:2020-12-07
- 期刊:
- 影响因子:4
- 作者:Herrera, Cinthya Trujillo;Labram, John G.
- 通讯作者:Labram, John G.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Labram其他文献
John Labram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Labram', 18)}}的其他基金
Quaternary Oxide P-type and Ambipolar Semiconductors for Large-Area CMOS
用于大面积 CMOS 的四元氧化物 P 型和双极半导体
- 批准号:
1902032 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
蒽醌/石墨烯纳米复合材料电极的电催化氧还原性能及其在异相electro-Fenton-like体系中的应用研究
- 批准号:21177017
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Classification of corrosion mechanism of steel bar in concrete based on electro-chemical and optical measurements and validation by coupled physical-chemical analysis
基于电化学和光学测量的混凝土钢筋腐蚀机理分类以及物理化学耦合分析验证
- 批准号:
23H01482 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Advanced micro-opto-electro-mechanical systems for elastic optical telecommunications networks
用于弹性光通信网络的先进微光机电系统
- 批准号:
530551-2018 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research and Development Grants
Low voltage micro-electro-mechanical systems (MEMS) for actuators and optical devices
用于执行器和光学设备的低压微机电系统 (MEMS)
- 批准号:
RGPIN-2022-05019 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Imaging at the speed of spikes: An electro-optical multiphoton microscope
以尖峰速度成像:光电多光子显微镜
- 批准号:
10516843 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Advanced micro-opto-electro-mechanical systems for elastic optical telecommunications networks
用于弹性光通信网络的先进微光机电系统
- 批准号:
530551-2018 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research and Development Grants
Unravelling Carrier Dynamics in Organic and Perovskite Semiconductors using Novel Electro-Optical Techniques.
使用新型光电技术揭示有机和钙钛矿半导体中的载流子动力学。
- 批准号:
545694-2020 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Postgraduate Scholarships - Doctoral
Electro-Optical Primers for Safe Use and Clean Manufacturing
用于安全使用和清洁制造的电光底漆
- 批准号:
LP190100505 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Linkage Projects
Advanced micro-opto-electro-mechanical systems for elastic optical telecommunications networks
用于弹性光通信网络的先进微光机电系统
- 批准号:
530551-2018 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research and Development Grants
Smart Electro-Optical Techniques for Bowel Cancer Surgery
肠癌手术的智能光电技术
- 批准号:
2593618 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship
Unravelling Carrier Dynamics in Organic and Perovskite Semiconductors using Novel Electro-Optical Techniques.
使用新型光电技术揭示有机和钙钛矿半导体中的载流子动力学。
- 批准号:
545694-2020 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Postgraduate Scholarships - Doctoral