CAREER: Big Data Climate Causality Analytics
职业:大数据气候因果关系分析
基本信息
- 批准号:1942714
- 负责人:
- 金额:$ 54.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A fundamental problem in climate science is climate causality analysis that studies the cause-effect relationship among climate variables, such as temperature and humidity. By studying how the climate system works from a causality perspective, the findings could be used for many research areas including climate variability, climate dynamics, climate simulation, and extreme climate prediction. Nowadays, climate causality study faces many computing challenges, such as processing very large and high-dimensional datasets, and the complexity of modern computing resources. To tackle these challenges, this project targets novel causality discovery algorithms and related scalable computing techniques. The project is expected to greatly aid Earth System scientists and climate scientists to explore new hypotheses and use cases related to climate causality. The project includes an integrated program of research, education and outreach to help better understand and evaluate climate simulation, fostering workforce development for a multidisciplinary research community on "Data + Computing + Climate Science", and raising interest in both IT technology and climate studies among K-12 students, and various underrepresented groups. The project thus serves the national interest, as stated in NSF's mission, by promoting the progress of science and advancing national prosperity and welfare.The goal of this CAREER project is to study efficient and reproducible causality analytics for large-scale climate data, so that climate scientists can easily test their causal hypotheses, reproduce existing studies and compare different causality analytics results. To handle the increasing dimensionality and resolution of spatiotemporal climate datasets, the project will study incremental causality discovery algorithms for large-scale climate datasets and parallel causality discovery for spatiotemporal climate data. To address the variety of both causal discovery algorithms and climate simulation/observation datasets, the project will study how to effectively measure climate causality results from different causality algorithms and different climate datasets, and integrate causality results through ensemble techniques. To cope with difficulties in conducting and reproducing causality analytics with large-scale climate datasets, the project will study cloud computing for big data climate analytics pipeline construction and execution optimization. The project will be evaluated from two perspectives. From the computing perspective, the research will be evaluated in terms of algorithm computation complexity, algorithm accuracy and algorithm scalability. From the climate perspective, the applicability of the research will be evaluated by collaborating with climate scientists in their specific research programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候因果分析是气候科学中的一个基本问题,它研究温度和湿度等气候变量之间的因果关系。通过从因果关系的角度研究气候系统如何工作,这些发现可以用于许多研究领域,包括气候变率,气候动力学,气候模拟和极端气候预测。目前,气候因果关系研究面临着许多计算挑战,如处理超大规模和高维数据集,以及现代计算资源的复杂性。 为了应对这些挑战,该项目的目标是新颖的因果关系发现算法和相关的可扩展计算技术。该项目预计将极大地帮助地球系统科学家和气候科学家探索与气候因果关系相关的新假设和用例。该项目包括一个综合的研究,教育和推广计划,以帮助更好地理解和评估气候模拟,促进劳动力发展的多学科研究社区的“数据+计算+气候科学”,并提高了兴趣在IT技术和气候研究中K-12学生,和各种代表性不足的群体。因此,正如NSF的使命所述,该项目通过促进科学进步和促进国家繁荣和福利来服务于国家利益。该CAREER项目的目标是研究大规模气候数据的高效和可重复的因果分析,以便气候科学家可以轻松地验证他们的因果假设,重现现有研究并比较不同的因果分析结果。为了处理时空气候数据集的维数和分辨率的增加,该项目将研究大规模气候数据集的增量因果关系发现算法和时空气候数据的并行因果关系发现。为了解决因果发现算法和气候模拟/观测数据集的多样性,该项目将研究如何有效地测量来自不同因果算法和不同气候数据集的气候因果结果,并通过集成技术整合因果结果。为了科普大规模气候数据集进行和再现因果关系分析的困难,该项目将研究云计算用于大数据气候分析管道建设和执行优化。该项目将从两个角度进行评估。从计算的角度,研究将评估算法的计算复杂度,算法的准确性和算法的可扩展性。 从气候的角度来看,该研究的适用性将通过与气候科学家在其具体研究项目中的合作来评估。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DRLO: Deep Representation Learning for Large Scale Off-track Satellite Remote Sensing Data
- DOI:10.1109/bigdata59044.2023.10386306
- 发表时间:2023-12
- 期刊:
- 影响因子:0
- 作者:Xin Huang;Chenxi Wang;Wenbin Zhang;Sanjay Purushotham;Jianwu Wang
- 通讯作者:Xin Huang;Chenxi Wang;Wenbin Zhang;Sanjay Purushotham;Jianwu Wang
Reproducible and Portable Big Data Analytics in the Cloud
- DOI:10.1109/tcc.2023.3245081
- 发表时间:2023-07-01
- 期刊:
- 影响因子:6.5
- 作者:Wang,Xin;Guo,Pei;Wang,Jianwu
- 通讯作者:Wang,Jianwu
CNN based Ocean Eddy Detection Using Cloud Services
- DOI:10.1109/igarss52108.2023.10283367
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:S. A. Mostafa;Jinbo Wang;Benjamin Holt;Sanjay Purushotham;Jianwu Wang
- 通讯作者:S. A. Mostafa;Jinbo Wang;Benjamin Holt;Sanjay Purushotham;Jianwu Wang
A Deep Learning Model for Detecting Dust in Earth's Atmosphere from Satellite Remote Sensing Data
- DOI:10.1109/smartcomp50058.2020.00045
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Ping Hou;Pei Guo;Peng Wu;Jianwu Wang;A. Gangopadhyay;Zhibo Zhang
- 通讯作者:Ping Hou;Pei Guo;Peng Wu;Jianwu Wang;A. Gangopadhyay;Zhibo Zhang
Scalable and Hybrid Ensemble-Based Causality Discovery
- DOI:10.1109/smds49396.2020.00016
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Pei Guo;Achuna Ofonedu;Jianwu Wang
- 通讯作者:Pei Guo;Achuna Ofonedu;Jianwu Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianwu Wang其他文献
Nitrogen-cycling genes and rhizosphere microbial community with reduced nitrogen application in maize/soybean strip intercropping
玉米/大豆间作减氮氮循环基因与根际微生物群落
- DOI:
10.1007/s10705-018-9960-4 - 发表时间:
2018-10 - 期刊:
- 影响因子:0
- 作者:
Lingling Yu;Yiling Tang;Zhiguo Wang;Yionggang Gou;Jianwu Wang - 通讯作者:
Jianwu Wang
Impacts of human lysozyme transgene on the microflora of pig feces and the surrounding soil.
人溶菌酶转基因对猪粪便和周围土壤微生物区系的影响。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:4.1
- 作者:
Jie Zhao;Jianxiang Xu;Jianwu Wang;Yaofeng Zhao;Lei Zhang;Jin He;M. Chu;Ning Li - 通讯作者:
Ning Li
Comparative Proteomics of Milk Fat Globule Membrane Proteins from Transgenic Cloned Cattle
转基因克隆牛乳脂球膜蛋白的比较蛋白质组学
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Shunchao Sui;Jie Zhao;Jianwu Wang;Ran Zhang;Chengdong Guo;Tian Yu;Ning Li - 通讯作者:
Ning Li
Chloroplast and mitochondrial microsatellites for Millettia pinnata (Fabaceae) and cross-amplification in related species1
鸡血藤(豆科)的叶绿体和线粒体微卫星以及相关物种的交叉扩增1
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.6
- 作者:
Yanling Wang;Hongxian Xie;Yi Yang;Ye;Jianwu Wang;F. Tan - 通讯作者:
F. Tan
Application of Optogenetics in Neurodegenerative Diseases
- DOI:
10.1007/s10571-024-01486-1 - 发表时间:
2024-07-26 - 期刊:
- 影响因子:4.800
- 作者:
Qian Zhang;Tianjiao Li;Mengying Xu;Binish Islam;Jianwu Wang - 通讯作者:
Jianwu Wang
Jianwu Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianwu Wang', 18)}}的其他基金
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
- 批准号:
2050943 - 财政年份:2021
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
CyberTraining: DSE: Cross-Training of Researchers in Computing, Applied Mathematics and Atmospheric Sciences using Advanced Cyberinfrastructure Resources
网络培训:DSE:利用先进的网络基础设施资源对计算、应用数学和大气科学领域的研究人员进行交叉培训
- 批准号:
1730250 - 财政年份:2017
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
ARF鸟苷酸交换因子BIG1介导ACSL4依赖性铁死亡在非酒精性脂肪性肝炎中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Big Code深度背景增强的Android应用代码反混淆研究
- 批准号:61972290
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
BIG1介导STING囊泡转运在抗肺癌免疫反应中的作用及分子机制
- 批准号:81903639
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
水稻Big Grain3 通过调控细胞分裂素转运调节籽粒大小
- 批准号:2019JJ50243
- 批准年份:2019
- 资助金额:0.0 万元
- 项目类别:省市级项目
ARF鸟苷酸交换因子BIG1调控巨噬细胞重编程在脓毒症免疫抑制形成中的作用及机制研究
- 批准号:81971488
- 批准年份:2019
- 资助金额:56.0 万元
- 项目类别:面上项目
控制豆科作物器官大小关键基因BIG SEEDS1的功能与应用研究
- 批准号:31771345
- 批准年份:2017
- 资助金额:65.0 万元
- 项目类别:面上项目
生长素转运调控基因BIG介导高浓度CO2下气孔关闭的分子机制
- 批准号:31171356
- 批准年份:2011
- 资助金额:65.0 万元
- 项目类别:面上项目
ARF鸟苷酸交换因子BIG1定向调控ABCA1功能的分子机制
- 批准号:81173056
- 批准年份:2011
- 资助金额:69.0 万元
- 项目类别:面上项目
BIG2介导的GABAA型受体转运模式及信号调控机制
- 批准号:31070924
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Small Data in a Big World: Balancing Interpretability and Generalizability for Data Integration in Clinical Neuroscience
职业:大世界中的小数据:平衡临床神经科学数据集成的可解释性和概括性
- 批准号:
2322823 - 财政年份:2023
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
CAREER: Behavior-Driven Testing of Big Data Exploration Tools
职业:大数据探索工具的行为驱动测试
- 批准号:
2141506 - 财政年份:2022
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
CAREER: Towards Exploratory Data Science on Spatio-temporal Big Data
职业:走向时空大数据的探索性数据科学
- 批准号:
2046236 - 财政年份:2021
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
CAREER: Mapping Anthropocene Geomorphology with Deep Learning, Big Data Spatial Analytics, and LiDAR
职业:利用深度学习、大数据空间分析和激光雷达绘制人类世地貌图
- 批准号:
2046059 - 财政年份:2021
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
III: Small: Collaborative Research: Harnessing Big Data for Improving Career Mobility
III:小:协作研究:利用大数据提高职业流动性
- 批准号:
2007437 - 财政年份:2020
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
CAREER: Harnessing the Continuum for Big Data: Partial Differential Equations, Calculus of Variations, and Machine Learning
职业:利用大数据的连续体:偏微分方程、变分法和机器学习
- 批准号:
1944925 - 财政年份:2020
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
CAREER: Directed Information Theory for Networked Control Systems in Big Data Regime
职业:大数据体制中网络控制系统的定向信息论
- 批准号:
1944318 - 财政年份:2020
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant
CAREER: Bridging Minor Planet and Meteor Science in the Era of Big Data
职业:大数据时代架起小行星和流星科学的桥梁
- 批准号:
1944827 - 财政年份:2020
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Harnessing Big Data for Improving Career Mobility
III:小:协作研究:利用大数据提高职业流动性
- 批准号:
2006387 - 财政年份:2020
- 资助金额:
$ 54.23万 - 项目类别:
Standard Grant
CAREER: Advancing Latent Variable Statistical Modeling for the Analysis of Big and Complex Longitudinal Data to Promote Personalized Learning
职业:推进潜变量统计模型分析大而复杂的纵向数据以促进个性化学习
- 批准号:
1848451 - 财政年份:2019
- 资助金额:
$ 54.23万 - 项目类别:
Continuing Grant