CAREER: Submodular Optimization in Complex Environments: Theory, Algorithms, and Applications
职业:复杂环境中的子模优化:理论、算法和应用
基本信息
- 批准号:1943064
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Discrete optimization is an inherent challenge in algorithm design arising in various domains such as artificial intelligence, robotics, and smart cities. Even though discrete optimization problems are hard in general, prior work has shown that many real-world instances satisfy a natural diminishing property called submodularity. Playing an analogous role as convexity does for continuous optimization, submodularity has been transformational for algorithm design, leading to efficient optimization methods with strong theoretical guarantees. Despite this progress, the existing methodologies suffer known limitations and can benefit from a reexamination inspired by the challenges set forth by today's technological advances. This project aims to develop a research plan that builds the foundations of discrete and submodular optimization in complex, dynamic environments, addressing the challenges of scalability and uncertainty, and facilitating distributed and sequential learning in much broader settings. This project is interdisciplinary, featuring a synergistic education plan that incorporates development of both graduate and undergraduate courses at the University of Pennsylvania with the specific goal of identifying gaps in educational training and enriching the curriculum for teaching data science to engineers. It also aims to use available public education platforms to build a pipeline for STEM majors entering college, advance public communication around data science, and disseminate research results.The overarching goal of the proposed research program is to develop novel and foundational frameworks for submodular optimization in (i) stochastic, uncertain, dynamically evolving, and adversarially changing environments; (ii) distributed and multi-agent systems; and (iii) adaptive scenarios enabling sequential selection of data and observations. The project seeks to establish fundamental trade-offs between the best attainable solution quality and various types of complexities (specifically, computation, communication, and sample complexities), and devise algorithmic frameworks that meet such trade-offs. The resultant theory and algorithms will be applied to real-world scenarios.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在人工智能、机器人和智能城市等各个领域,离散优化是算法设计中固有的挑战。尽管离散优化问题总体上是困难的,但先前的工作已经表明,许多现实世界的实例满足一种称为子模的自然递减性质。子模块的作用类似于凸性对连续优化的作用,对算法设计起到了转化作用,从而产生了具有强大理论保证的高效优化方法。尽管取得了这一进展,但现有的方法仍存在已知的局限性,并可以从由当今技术进步提出的挑战引发的重新审查中受益。该项目旨在制定一项研究计划,在复杂、动态的环境中建立离散和子模块优化的基础,解决可伸缩性和不确定性的挑战,并在更广泛的环境中促进分布式和顺序学习。该项目是跨学科的,以协同教育计划为特色,该计划结合了宾夕法尼亚大学研究生和本科课程的发展,具体目标是找出教育培训方面的差距,并丰富向工程师教授数据科学的课程。它还旨在利用现有的公共教育平台为STEM专业的学生建立进入大学的渠道,促进围绕数据科学的公共交流,并传播研究成果。拟议研究计划的总体目标是为(I)随机、不确定、动态演变和不利变化的环境;(Ii)分布式和多智能体系统;以及(Iii)能够顺序选择数据和观测的自适应场景中的子模块优化开发新的基础框架。该项目寻求在可获得的最佳解决方案质量和各种类型的复杂性(特别是计算、通信和样本复杂性)之间建立基本的权衡,并设计出满足这些权衡的算法框架。由此产生的理论和算法将应用于现实世界的场景。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Collaborative Learning of Discrete Distributions under Heterogeneity and Communication Constraints
- DOI:
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Xinmeng Huang;Dong-hwan Lee;Edgar Dobriban;Hamed Hassani
- 通讯作者:Xinmeng Huang;Dong-hwan Lee;Edgar Dobriban;Hamed Hassani
Demystifying Disagreement-on-the-Line in High Dimensions
- DOI:10.48550/arxiv.2301.13371
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Dong-Hwan Lee;Behrad Moniri;Xinmeng Huang;Edgar Dobriban;Hamed Hassani
- 通讯作者:Dong-Hwan Lee;Behrad Moniri;Xinmeng Huang;Edgar Dobriban;Hamed Hassani
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hamed Hassani其他文献
Length Optimization in Conformal Prediction
保形预测中的长度优化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shayan Kiyani;George J Pappas;Hamed Hassani - 通讯作者:
Hamed Hassani
Neural Collaborative Filtering to Predict Human Contact with Large-Scale GPS data
利用神经协同过滤来预测人类与大规模 GPS 数据的接触
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jorge F. Barreras;Bethany Hsiao;Hamed Hassani;Duncan J Watts - 通讯作者:
Duncan J Watts
Non-asymptotic Coded Slotted ALOHA
非渐近编码时隙ALOHA
- DOI:
10.1109/isit.2019.8849696 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Mohammad Fereydounian;Xingran Chen;Hamed Hassani;S. S. Bidokhti - 通讯作者:
S. S. Bidokhti
Learning Q-network for Active Information Acquisition
用于主动信息获取的学习 Q 网络
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Heejin Jeong;Brent Schlotfeldt;Hamed Hassani;M. Morari;Daniel D. Lee;George Pappas - 通讯作者:
George Pappas
On a Relation Between the Rate-Distortion Function and Optimal Transport
率失真函数与最优传输关系的研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
E. Lei;Hamed Hassani;S. S. Bidokhti - 通讯作者:
S. S. Bidokhti
Hamed Hassani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hamed Hassani', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2023 IEEE North American School for Information Theory
旅行:2023 年 IEEE 北美信息论学院 NSF 学生旅行补助金
- 批准号:
2320167 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: EnCORE: Institute for Emerging CORE Methods in Data Science
合作研究:EnCORE:数据科学新兴核心方法研究所
- 批准号:
2217062 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research: Communications in Ultra-Low-Rate Regime: Fundamental Limits, Code Constructions, and Applications
CIF:小型:协作研究:超低速率制度下的通信:基本限制、代码构造和应用
- 批准号:
1910056 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII: CCF: Low-Complexity Coding at Optimal Length
CRII:CCF:最佳长度的低复杂度编码
- 批准号:
1755707 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
A further challenge to the optimization problems with submodular discrete-convex structures
对子模离散凸结构优化问题的进一步挑战
- 批准号:
22K11922 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: New Algorithms for Submodular Optimization
职业:子模优化的新算法
- 批准号:
1750333 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Studies of models and algorithms in machine learning via submodular optimization
通过子模块优化研究机器学习中的模型和算法
- 批准号:
16H06676 - 财政年份:2016
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Developments of discrete optimization theory and efficient algorithms based on submodular structures
基于子模结构的离散优化理论和高效算法的发展
- 批准号:
25280004 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CIF: Small: Structured-Network Coding: Fundamental Limits via Submodular Function Optimization
CIF:小型:结构化网络编码:通过子模函数优化实现基本限制
- 批准号:
1320237 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Practical Algorithms for Applied Submodular Optimization
应用子模优化的实用算法
- 批准号:
1160915 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Approximation Algorithms for Submodular Optimization
子模优化的近似算法
- 批准号:
23300002 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Submodular optimization, lattice theory and maximum constraint satisfaction problems
子模优化、格理论和最大约束满足问题
- 批准号:
EP/H000666/1 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Research Grant
NeTS: Small: Generalized Submodular Optimization for Integrated Networked Sensing Systems
NeTS:小型:集成网络传感系统的广义子模块优化
- 批准号:
1017701 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Branch Decomposition Techniques for Submodular Optimization
子模优化的分支分解技术
- 批准号:
0926618 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant