CAREER: Robust Adaptive Optimization Algorithms for Differentially Private Learning
职业:用于差异化私人学习的鲁棒自适应优化算法
基本信息
- 批准号:1943046
- 负责人:
- 金额:$ 52.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Privacy-preserving optimization algorithms are essential tools for solving machine learning (ML) problems while protecting the privacy of individuals in the datasets used for training ML models. Despite the recent advances, there is a lack of a theoretical foundation for understanding their performance and hence their use in practice is limited because of utility concerns. This project seeks to develop a theory to understand the performance of private optimizers and use it to guide the design of algorithms with reliable and robust performance. To this end, the project focuses on the three main challenges related to differentially private learning: (i) bridging the gap between theory and practice by developing a unified theoretical framework that can be used to better understand and explain the performance of private optimizers; (ii) applying the theory to guide the design of private optimizers whose privacy and utility guarantees have robustness to hyperparameter choices; (iii) extending the framework, established principles, and algorithms to deep learning models. The project’s novelty is in providing a unified theoretical framework that enables rigorous performance analysis of private optimizers. By providing a theoretical foundation, this project will help accelerate research on differentially private learning, for example, by allowing the principled design of robust and reliable training algorithms. More broadly, this project has a great potential to accelerate advances in other domains of science by providing tools to share and analyze sensitive data without having to sacrifice the privacy of individuals. The project involves both graduate and undergraduate students in this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
隐私保护优化算法是解决机器学习(ML)问题的重要工具,同时保护用于训练ML模型的数据集中的个人隐私。尽管最近取得了进展,但缺乏理解其性能的理论基础,因此由于实用性问题,它们在实践中的使用受到限制。该项目旨在开发一种理论来理解私有优化器的性能,并使用它来指导具有可靠和鲁棒性能的算法的设计。为此,该项目侧重于与差异化私人学习相关的三个主要挑战:(一)通过开发一个统一的理论框架来弥合理论与实践之间的差距,该框架可用于更好地理解和解释私人优化器的性能;(二)应用该理论指导私人优化器的设计,其隐私和效用保证对超参数选择具有鲁棒性;(iii)将框架、既定原则和算法扩展到深度学习模型。该项目的新奇之处在于提供了一个统一的理论框架,可以对私有优化器进行严格的性能分析。通过提供理论基础,该项目将有助于加速对差异化私人学习的研究,例如,通过允许稳健和可靠的训练算法的原则设计。更广泛地说,该项目有很大的潜力,通过提供工具来共享和分析敏感数据,而不必牺牲个人隐私,从而加速其他科学领域的进步。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic Adaptive Line Search for Differentially Private Optimization
- DOI:10.1109/bigdata50022.2020.9378011
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Chen Chen-Chen;Jaewoo Lee
- 通讯作者:Chen Chen-Chen;Jaewoo Lee
Scaling up Differentially Private Deep Learning with Fast Per-Example Gradient Clipping
- DOI:10.2478/popets-2021-0008
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Jaewoo Lee;Daniel Kifer
- 通讯作者:Jaewoo Lee;Daniel Kifer
Differentially Private Goodness-of-Fit Tests for Continuous Variables
- DOI:10.1016/j.ecosta.2021.09.007
- 发表时间:2021-10
- 期刊:
- 影响因子:1.9
- 作者:Seungwoo Kwak;Jeongyoun Ahn;Jaewoo Lee;Cheolwoo Park
- 通讯作者:Seungwoo Kwak;Jeongyoun Ahn;Jaewoo Lee;Cheolwoo Park
MBAG: A Scalable Mini-Block Adaptive Gradient Method for Deep Neural Networks
- DOI:10.1109/bigdata55660.2022.10020262
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Jaewoo Lee
- 通讯作者:Jaewoo Lee
Performance Testing for Cloud Computing with Dependent Data Bootstrapping
使用依赖数据引导的云计算性能测试
- DOI:10.1109/ase51524.2021.9678687
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:He, Sen;Liu, Tianyi;Lama, Palden;Lee, Jaewoo;Kim, In Kee;Wang, Wei
- 通讯作者:Wang, Wei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaewoo Lee其他文献
The Valuation Channel of International Adjustment
国际调整的估值渠道
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Fabio Ghironi;Jaewoo Lee;A. Rebucci - 通讯作者:
A. Rebucci
Financial development by learning
通过学习实现金融发展
- DOI:
10.1016/0304-3878(96)00007-7 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
Jaewoo Lee - 通讯作者:
Jaewoo Lee
Defect spectroscopy of sidewall interfaces in gate-all-around silicon nanosheet FET
环栅硅纳米片 FET 侧壁界面的缺陷光谱
- DOI:
10.1088/1361-6528/abd278 - 发表时间:
2020 - 期刊:
- 影响因子:3.5
- 作者:
K. Lee;Yeonsu Kim;Hyebin Lee;Sojeong Park;Yongwoo Lee;Min;H. Ji;Jaewoo Lee;Jungu Chun;Moonsoo Sung;Young;Doyoon Kim;Junhee Choi;Jae Woo Lee;D. Jeon;Sung;Gyu - 通讯作者:
Gyu
Characterizing losses in InAs two-dimensional electron gas-based gatemon qubits
表征 InAs 二维电子气门量子位的损耗
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.2
- 作者:
W. Strickland;Lukas J. Baker;Jaewoo Lee;Krishna Dindial;B. H. Elfeky;P. J. Strohbeen;M. Hatefipour;Peng Yu;Ido Levy;Jacob Issokson;V. Manucharyan;Javad Shabani - 通讯作者:
Javad Shabani
Asset Purchase Programs in European Emerging Markets
欧洲新兴市场的资产购买计划
- DOI:
10.5089/9781513593753.087.a001 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Marco Arena;Rudolfs Bems;Nadeem Ilahi;Jaewoo Lee;Willis Lindquist;Tonny Lybek - 通讯作者:
Tonny Lybek
Jaewoo Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
心理紧张和应力影响下Robust语音识别方法研究
- 批准号:60085001
- 批准年份:2000
- 资助金额:14.0 万元
- 项目类别:专项基金项目
ROBUST语音识别方法的研究
- 批准号:69075008
- 批准年份:1990
- 资助金额:3.5 万元
- 项目类别:面上项目
改进型ROBUST序贯检测技术
- 批准号:68671030
- 批准年份:1986
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Risk-Based Methods for Robust, Adaptive, and Equitable Flood Risk Management in a Changing Climate
职业:在气候变化中实现稳健、适应性和公平的洪水风险管理的基于风险的方法
- 批准号:
2238060 - 财政年份:2023
- 资助金额:
$ 52.96万 - 项目类别:
Standard Grant
CAREER: Enabling Robust and Adaptive Architectures through a Decoupled Security-Centric Hardware/Software Stack
职业:通过解耦的以安全为中心的硬件/软件堆栈实现鲁棒性和自适应架构
- 批准号:
2238548 - 财政年份:2023
- 资助金额:
$ 52.96万 - 项目类别:
Continuing Grant
CAREER: Robust and Adaptive Streaming Analytics for Sensorized Farms: Internet-of-Small-Things to the Rescue
职业:适用于传感农场的稳健且自适应的流分析:小型物联网的救援
- 批准号:
2146449 - 财政年份:2022
- 资助金额:
$ 52.96万 - 项目类别:
Continuing Grant
CAREER: Towards Robust and Efficient High-Order Adaptive Computational Methods for Conservation Laws in Complex Geometries -- Analysis, Implementation, and Applications
职业:复杂几何守恒定律的稳健高效高阶自适应计算方法——分析、实现和应用
- 批准号:
0132967 - 财政年份:2002
- 资助金额:
$ 52.96万 - 项目类别:
Standard Grant
CAREER: Multi-Variable Optimality-Guided Robust Adaptive Control Design - A Game Theoretic Approach
职业:多变量最优性引导的鲁棒自适应控制设计 - 博弈论方法
- 批准号:
0296071 - 财政年份:2001
- 资助金额:
$ 52.96万 - 项目类别:
Standard Grant
CAREER: Adaptive and Robust Automatic Speech Recognition inHuman-Computer Interaction
职业:人机交互中的自适应和鲁棒自动语音识别
- 批准号:
9996042 - 财政年份:1998
- 资助金额:
$ 52.96万 - 项目类别:
Continuing Grant
CAREER: Engineering Synthesis of High Performance Adaptive Robust Controllers for Mechanical Systems and Manufacturing Processes
职业:机械系统和制造过程的高性能自适应鲁棒控制器的工程综合
- 批准号:
9734345 - 财政年份:1998
- 资助金额:
$ 52.96万 - 项目类别:
Standard Grant
Career: Nonlinear Control: New Problems for Robust and Adaptive Design
职业:非线性控制:鲁棒和自适应设计的新问题
- 批准号:
9896164 - 财政年份:1997
- 资助金额:
$ 52.96万 - 项目类别:
Standard Grant
CAREER: Multi-Variable Optimality-Guided Robust Adaptive Control Design - A Game Theoretic Approach
职业:多变量最优性引导的鲁棒自适应控制设计 - 博弈论方法
- 批准号:
9702702 - 财政年份:1997
- 资助金额:
$ 52.96万 - 项目类别:
Standard Grant
Career: Nonlinear Control: New Problems for Robust and Adaptive Design
职业:非线性控制:鲁棒和自适应设计的新问题
- 批准号:
9624386 - 财政年份:1996
- 资助金额:
$ 52.96万 - 项目类别:
Standard Grant