CAREER: High-Aspect-Ratio Multi-Material Three-Dimensional Microstructures via Microfluidic Direct Laser Writing
职业:通过微流控激光直接写入的高纵横比多材料三维微结构
基本信息
- 批准号:1943356
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will focus on understanding and advancing a novel additive manufacturing strategy to enable entirely new paradigms of multi-material, and in turn multi-functional, three-dimensional (3D) structures at sub-micron scales for emerging scientific applications. The ability to manufacture geometrically complex yet functionally advantageous microsystems comprised of multiple fully-integrated materials—corresponding to desired optical, biological, chemical, electrical, and/or mechanical properties—offers the potential to revolutionize a multitude of fields, including biomedicine, optics and photonics, metamaterials, and microrobotics. A recently created additive manufacturing technique, "microfluidic direct laser writing," is uniquely suited to realize such capabilities. By using tightly-focused laser pulses to solidify distinct, sequentially loaded photoreactive liquids in designated locations, this approach allows for multi-material 3D microstructures to be built with unparalleled geometric versatility at 100-nanometer length scales. Current methods of additive manufacturing at this scale appear to be limited to building 3D constructs with small height-to-width aspect ratios. This research project seeks to understand, explain, and ultimately control the fundamental process mechanisms that have heretofore hindered the use of direct laser writing for printing multi-material 3D microstructures with large aspect ratios. In concert, this CAREER program will establish education and outreach activities that are either directly integrated with or inspired by the research plans, including: (i) non-competitive additive manufacturing activities for high school women, (ii) year-long integrated research projects for high school students, (iii) a four-year-long Honors Thesis project for undergraduate students, and (iv) new multi-material projects for the additive manufacturing curriculum. By leveraging the unique accessibility of additive manufacturing (or colloquially, "3D printing"), these activities are expected to increase science and engineering exposure and inspire a lasting interest and confidence in advanced manufacturing research for high school, undergraduate, and graduate students, with an emphasis on inclusion for women and students of color.The overarching goal of the research is to uncover and access regions of the microfluidic direct laser writing processing design space to achieve accurate and repeatable manufacturing of entirely new classes of multi-material 3D nanostructured components that are not restricted to low aspect ratios. At present, the roles of underlying microfluidic direct laser writing process factors—namely, those stemming from two-photon polymerization phenomena and microscale mechano-fluidic interactions—remain poorly understood. To bridge these knowledge gaps, this research project will combine theoretical and experimental studies to systematically investigate and reveal the fundamental relationships connecting: (i) the point-by-point, layer-by-layer writing path of the scanning laser, (ii) microfluidic infusion conditions, (iii) mechanical and shrinkage-based microstructure deformation dynamics, and (iv) material misalignment error propagation during intermediate microfluidic direct laser writing stages. It is envisioned that the results of the research activities will catalyze new technologies for optical, biomedical, and microelectronics applications in academic, commercial, and governmental sectors. This project will allow the PI to significantly advance the state of knowledge in multi-material additive micro/nanomanufacturing, expand the use of direct laser writing, and firmly establish the PI's long-term career in advanced manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)资助将专注于理解和推进新型增材制造策略,以实现多材料的全新范例,进而在亚微米尺度上实现多功能三维(3D)结构,以用于新兴的科学应用。 制造几何形状复杂但功能上有利的微系统的能力,包括多个完全集成的材料-对应于所需的光学,生物,化学,电气和/或机械性能-提供了革命性的许多领域,包括生物医学,光学和光子学,超材料和微型机器人的潜力。 最近创建的增材制造技术,“微流体直接激光写入”,是唯一适合实现这种能力。通过使用紧密聚焦的激光脉冲在指定位置固化不同的、顺序加载的光反应液体,这种方法允许在100纳米长度尺度上构建具有无与伦比的几何通用性的多材料3D微结构。 目前这种规模的增材制造方法似乎仅限于构建具有小高宽比的3D结构。 该研究项目旨在理解,解释并最终控制迄今为止阻碍直接激光写入用于打印具有大纵横比的多材料3D微结构的基本工艺机制。 在音乐会上,这个职业计划将建立教育和推广活动,要么直接与研究计划相结合,要么受到研究计划的启发,包括:(i)为高中女生举办的非竞争性增材制造活动,(ii)为高中生举办的为期一年的综合研究项目,(iii)为本科生举办的为期四年的荣誉论文项目,及(iv)增材制造课程的新多材料项目。 通过利用增材制造的独特可访问性,(或通俗地说,“3D打印”),这些活动预计将增加科学和工程接触,激发高中,本科和研究生对先进制造研究的持久兴趣和信心,该研究的总体目标是揭示和访问微流体直接激光的区域,写入处理设计空间,以实现不限于低纵横比的全新类别的多材料3D纳米结构部件的精确和可重复制造。 目前,底层微流体直接激光写入过程中的因素,即那些来自双光子聚合现象和微尺度机械流体相互作用的作用仍然知之甚少。 为了弥合这些知识差距,本研究项目将联合收割机理论和实验研究相结合,系统地研究和揭示以下方面的基本关系:(i)扫描激光的逐点、逐层写入路径,(ii)微流体注入条件,(iii)机械和基于收缩的微结构变形动力学,以及(iv)在中间微流体直接激光写入阶段期间的材料未对准误差传播。 据设想,研究活动的结果将促进学术,商业和政府部门的光学,生物医学和微电子应用的新技术。 该项目将使PI能够显著推进多材料增材微/纳米制造的知识状态,扩大直接激光写入的使用,并牢固地建立PI在先进制造领域的长期职业生涯。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
3d Nanoprinted External Microfluidic Structures Via Ex Situ Direct Laser Writing
通过异位直接激光写入 3d 纳米打印外部微流体结构
- DOI:10.1109/mems51782.2021.9375347
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Acevedo, Ruben;Wen, Ziteng;Rosenthal, Ian B.;Freeman, Emmett Z.;Restaino, Michael;Gonzalez, Noemi;Sochol, Ryan D.
- 通讯作者:Sochol, Ryan D.
Integrated 3D printed microfluidic circuitry and soft microrobotic actuators via in situ direct laser writing
- DOI:10.1088/1361-6439/abec1c
- 发表时间:2021-04-01
- 期刊:
- 影响因子:2.3
- 作者:Alsharhan, Abdullah T.;Young, Olivia;Sochol, Ryan D.
- 通讯作者:Sochol, Ryan D.
In Situ Direct Laser Writing of 3D Graphene‐Laden Microstructures
- DOI:10.1002/admt.202100222
- 发表时间:2021-06
- 期刊:
- 影响因子:6.8
- 作者:Michael A. Restaino;Noah Eckman;Abdullah T. Alsharhan;Andrew C. Lamont;Jackson D. Anderson;D. Weinstein;A. Hall;R. Sochol
- 通讯作者:Michael A. Restaino;Noah Eckman;Abdullah T. Alsharhan;Andrew C. Lamont;Jackson D. Anderson;D. Weinstein;A. Hall;R. Sochol
Toward Geometric Control of Late-Stage Diffusion Properties for 3D Printed Biodegradable Microstructures
3D 打印可生物降解微结构后期扩散特性的几何控制
- DOI:10.1109/mems51782.2021.9375465
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Freeman, Emmett Z.;Grosvenor, Eleanor C.;Rosenthal, Ian B.;Acevedo, Ruben;Sochol, Ryan D.
- 通讯作者:Sochol, Ryan D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Sochol其他文献
Ryan Sochol的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Sochol', 18)}}的其他基金
Collaborative Research: Liquid Phase Atomic Layer Deposition of Thin Films on Nanoparticles Using Three-Dimensionally Printed Microfluidics
合作研究:利用三维印刷微流控在纳米粒子上进行薄膜的液相原子层沉积
- 批准号:
1761395 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于元数据和契约式设计的Aspect安全组合机制及其支撑工具
- 批准号:60873024
- 批准年份:2008
- 资助金额:33.0 万元
- 项目类别:面上项目
基于Aspect的软件非功能性规约建模、测试和验证研究
- 批准号:60603036
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deep X-Ray Lithography for High Aspect Ratio Polymer Micro Structures
高深宽比聚合物微结构的深度 X 射线光刻
- 批准号:
RGPIN-2019-06009 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Self-Standing Organic Nanowire Sensors: Nanowire Arrays with Ultrahigh Aspect Ratio and Challenge to Homochirality
自立式有机纳米线传感器:超高纵横比纳米线阵列和同手性挑战
- 批准号:
22K19061 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Numerical and Experimental Aeroelastic Analysis of High Aspect Ratio Wings .
高展弦比机翼的数值和实验气动弹性分析。
- 批准号:
2611371 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Studentship
Deep X-Ray Lithography for High Aspect Ratio Polymer Micro Structures
高深宽比聚合物微结构的深度 X 射线光刻
- 批准号:
RGPIN-2019-06009 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Deep X-Ray Lithography for High Aspect Ratio Polymer Micro Structures
高深宽比聚合物微结构的深度 X 射线光刻
- 批准号:
RGPIN-2019-06009 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Fabrication of high aspect ratio AFM probes with diamond apex
具有金刚石尖端的高纵横比 AFM 探针的制造
- 批准号:
543529-2019 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Collaborative Research and Development Grants
Evaluation of the aspect ratio of ferropericlase under lower-mantle conditions
下地幔条件下方镁石长径比的评估
- 批准号:
449701262 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Research Grants
Development of a QC Method for the Determination of Aspect Ratio of Graphene & 2D Nanomaterials
开发测定石墨烯长径比的QC方法
- 批准号:
106023 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
Simultaneous volumetric measurement of the velocity and temperature field in Rayleigh-Bénard cells with large aspect ratio
大纵横比瑞利-伯纳德池中速度场和温度场的同时体积测量
- 批准号:
429328691 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Priority Programmes
Collaborative Research: Nanoimprinting of High Aspect-Ratio Nanostructures in Thermoplastic Polymers Using Metallic Glass Roller Molds
合作研究:使用金属玻璃辊模具在热塑性聚合物中进行高纵横比纳米结构的纳米压印
- 批准号:
1927621 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant














{{item.name}}会员




