CAREER: A Scalable Occupant-Driven Energy Optimization System for Commercial Buildings

职业:商业建筑的可扩展的居住者驱动的能源优化系统

基本信息

  • 批准号:
    1943396
  • 负责人:
  • 金额:
    $ 53.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

This project seeks to fundamentally change how people live their everyday lives towards a more environmentally responsible and sustainable future and has the potential to play a major role in reducing our reliance on fossil fuels and combating climate change. This research will help enable individuals to reduce their personal energy usage in indoor commercial building settings by providing real-time visibility into the energy cost of each action. This will enable energy-accountability in commercial buildings by providing actionable recommendations with quantifiable savings, as well as insights for both occupants and building managers so that they can act in a timely manner. These small savings can add up: even a small 1% reduction in commercial building energy consumption translates to 1.5 billion dollars of annual savings for the nation. This project will help advance research at the intersection of building-scale systems, Internet-of-Things, wearable systems, and recommender systems. Course modules developed on embedded systems, mobile computing, Internet-of-Things, and deep reinforcement learning will be used to train undergraduate and graduate students.This proposal aims to significantly reduce energy consumption in commercial buildings by examining each occupant’s unique and individualized energy usage, or “energy footprint”, and providing occupants with actionable and measurable energy-saving recommendations. The proposed system comprises of several components, including real-time sensing and actuation, building energy monitoring, indoor localization, large-scale time-series data analytics, and recommender systems. This project is organized into three research thrusts: (1) develop a digital twin model of a commercial building to simulate energy savings from human-driven actions, and research efficient algorithms for computing each occupant’s “energy footprint” in shared environments. (2) advance knowledge in deep reinforcement learning and design a recommender system to discover actions that have the best potential for saving energy while adapting to user preferences. (3) investigate effective feedback mechanisms and incentive schemes to encourage energy saving behaviors, increase recommendation quality, and improve recommendation acceptance rate.Research results, including datasets, embedded hardware designs, software code, simulators, smartphone application code, reports, presentations, and papers will be shared with the research community through the research group website and GitHub. To ensure privacy, any personally identifiable information in datasets will be removed. To encourage deployment and experimentation by others, documented open-source software and hardware will be release and maintain in the project’s GitHub repository at https://github.com/Columbia-ICSL/EnergyFootprinting for at least five years.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在从根本上改变人们的日常生活方式,以实现对环境更加负责和可持续的未来,并有可能在减少我们对化石燃料的依赖和应对气候变化方面发挥重要作用。这项研究将通过提供对每个行动的能源成本的实时可见性,帮助个人减少室内商业建筑环境中的个人能源使用。这将通过提供具有可量化节约的可操作建议以及为居住者和建筑管理者提供见解,使他们能够及时采取行动,从而实现商业建筑的能源问责制。这些小的节省可以加起来:即使是商业建筑能耗减少1%,也可以为国家每年节省15亿美元。该项目将有助于推进建筑规模系统,物联网,可穿戴系统和推荐系统的交叉研究。该项目将利用嵌入式系统、移动的计算、物联网和深度强化学习等课程模块,对本科生和研究生进行培训。该项目旨在通过研究每个居住者独特的、个性化的能源使用情况(即“能源足迹”),为居住者提供可操作和可衡量的节能建议,从而大幅降低商业建筑的能源消耗。所提出的系统包括几个组件,包括实时传感和驱动,建筑物能源监测,室内定位,大规模时间序列数据分析和推荐系统。该项目分为三个研究方向:(1)开发一个商业建筑的数字孪生模型,以模拟人类驱动的行动节省能源,并研究计算共享环境中每个居住者的“能源足迹”的有效算法。(2)推进深度强化学习的知识,并设计一个推荐系统,以发现在适应用户偏好的同时具有最佳节能潜力的行动。(3)研究有效的反馈机制和激励方案,以鼓励节能行为,提高推荐质量,提高推荐接受率。研究成果,包括数据集,嵌入式硬件设计,软件代码,模拟器,智能手机应用程序代码,报告,演示文稿和论文将通过研究小组网站和GitHub与研究社区分享。为了确保隐私,数据集中的任何个人身份信息都将被删除。为了鼓励其他人进行部署和实验,记录的开源软件和硬件将在项目的GitHub存储库https://github.com/Columbia-ICSL/EnergyFootprinting中发布和维护至少五年。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
City-scale vehicle tracking and traffic flow estimation using low frame-rate traffic cameras
AI Stethoscope for Home Self-Diagnosis with AR Guidance
AR指导下的AI听诊器家庭自我诊断
A Low-Cost In-situ System for Continuous Multi-Person Fever Screening
用于连续多人发烧筛查的低成本原位系统
ARSteth: Enabling Home Self-Screening with AR-Assisted Intelligent Stethoscopes
ARSteth:利用 AR 辅助智能听诊器实现家庭自我筛查
A Data-driven System for City-wide Energy Footprinting and Apportionment
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaofan Jiang其他文献

PMsub2.5/sub exposure exacerbates seizure symptoms and cognitive dysfunction by disrupting iron metabolism and the Nrf2-mediated ferroptosis pathway
PM2.5 暴露通过破坏铁代谢和 Nrf2 介导的铁死亡途径加剧癫痫发作症状和认知功能障碍
  • DOI:
    10.1016/j.scitotenv.2023.168578
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
    8.000
  • 作者:
    Huiya Mei;Dongqin Wu;Zenghua Yong;Yingsi Cao;Yuanjin Chang;Junjie Liang;Xiaofan Jiang;Hua Xu;Jiatao Yang;Xian Shi;Ruijin Xie;Wenjing Zhao;Yu Wu;Yueying Liu
  • 通讯作者:
    Yueying Liu
How to improve performance of Chinese BIM-supported civil engineering projects based on the qualitative comparative analysis method
基于定性比较分析方法如何提高中国基于 BIM 的土木工程项目的绩效
  • DOI:
    10.1038/s41598-025-06662-x
  • 发表时间:
    2025-07-02
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Weiwei Zuo;Tingting Mei;Shuda Zhong;Xiaofan Jiang;Ning Yan
  • 通讯作者:
    Ning Yan
Erratum to: FSIP1 enhances the therapeutic sensitivity to CDK4/6 inhibitors in triple-negative breast cancer patients by activating the Nanog pathway
  • DOI:
    10.1007/s11427-025-2930-3
  • 发表时间:
    2025-04-24
  • 期刊:
  • 影响因子:
    9.500
  • 作者:
    Guanglei Chen;Lisha Sun;Xi Gu;Liping Ai;Jie Yang;Zhan Zhang;Pengjie Hou;Yining Wang;Xunyan Ou;Xiaofan Jiang;Xinbo Qiao;Qingtian Ma;Nan Niu;Jinqi Xue;Hao Zhang;Yongliang Yang;Caigang Liu
  • 通讯作者:
    Caigang Liu
Human epidermal growth factor receptor 2-positive (HER2
人表皮生长因子受体 2 阳性 (HER2
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiawen Bu;Yixiao Zhang;N. Niu;Kewei Bi;Lisha Sun;Xinbo Qiao;3. Yimin;Wang;Yinan Zhang;Xiaofan Jiang;Dan Wang;Qingtian Ma;Huajun Li;Caigang Liu
  • 通讯作者:
    Caigang Liu
Image Analysis for Identifying Mosquito Breeding Grounds
用于识别蚊子滋生地的图像分析

Xiaofan Jiang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaofan Jiang', 18)}}的其他基金

CPS: Medium: Collaborative Research: Building Information, Inhabitant, Interaction and Intelligent Integrated Modeling (BI5M)
CPS:中:协作研究:建筑信息、居民、交互和智能集成建模(BI5M)
  • 批准号:
    1837022
  • 财政年份:
    2018
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
CSR: Small: Collaborative Research: Overheard at Home - Mitigating Overhearing of Continuous Listening Devices
CSR:小:协作研究:在家无意中听到的声音 - 减轻连续监听设备的无意中听到的情况
  • 批准号:
    1815274
  • 财政年份:
    2018
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
CSR: CHS: Medium: Collaborative Research: Improving Pedestrian Safety in Urban Cities using Intelligent Wearable Systems
CSR:CHS:中:合作研究:利用智能可穿戴系统提高城市行人安全
  • 批准号:
    1704899
  • 财政年份:
    2017
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Fellowship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Studentship
FAST CAR-T: Faster, Adaptive and Scalable Technologies For CAR-T Manufacture
FAST CAR-T:更快、自适应和可扩展的 CAR-T 制造技术
  • 批准号:
    EP/Z532770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Research Grant
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
SHF: Small: QED - A New Approach to Scalable Verification of Hardware Memory Consistency
SHF:小型:QED - 硬件内存一致性可扩展验证的新方法
  • 批准号:
    2332891
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
SBIR Phase I: Scalable Magnetically-Geared Modular Space Manipulator for In-space Manufacturing and Active Debris Remediation Missions
SBIR 第一阶段:用于太空制造和主动碎片修复任务的可扩展磁力齿轮模块化空间操纵器
  • 批准号:
    2335583
  • 财政年份:
    2024
  • 资助金额:
    $ 53.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了