CAREER: Molecular mechanisms underlying yeast cellular starvation tolerance; spatial reasoning to increase STEM participation

职业:酵母细胞饥饿耐受性的分子机制;

基本信息

  • 批准号:
    1943488
  • 负责人:
  • 金额:
    $ 107.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

All organisms must respond to changes in their environment. For example, yeast which grow on grapes must survive drought, sudden rain, and changes in alcohol concentration during fermentation. In response to stress, cells alter the composition and chemical properties of their interior. An outstanding question is how changes in the interior of cells result in protection from stresses. Nuclear magnetic resonance spectroscopy (NMR) is a technique which can give information on the atomic level behavior of proteins within cells. In this research, NMR will be used to measure changes in protein behavior as cells are stressed. In addition, this project will facilitate the training of elementary school teachers and their students in spatial reasoning. Spatial reasoning is broadly defined as the ability to visualize, mentally manipulate, and create representations of complex three- dimensional objects. A widescale cultural misconception is that spatial reasoning skills are immutable; in fact, they are one of the most trainable of STEM-related skills. By targeting elementary school students, this project will serve to increase STEM participation in general and to mitigate disparities in STEM for underrepresented groups. Cells respond to environmental perturbations through wide-scale changes in their intracellular chemical environment, protein localization and dynamics, and global cytoplasmic physical properties. All of these responses are thought to be necessary for cell survival. To reconcile the sensitivity of stress-responsive proteins with the unknown changes in the cellular environment under stress conditions, we require an atomic-scale readout of intracellular protein behavior. In this research, in cell NMR experiments will be used to probe the intracellular environment in budding yeast. Budding yeast have well developed genetic, environmental and pharmacological perturbations that can be used to selectively control aspects of the cellular stress response. Comparisons between solution and cellular protein behavior by NMR will be used to determine how proteins change in cells and how cellular stress further effects proteins. NMR will be used to map atomic-level changes in stress-responsive proteins and a library of protein fragments will be used to determine sequence specificity of stress response. Manipulations of the yeast cells will be used to determine underlying chemical perturbations that lead to those changes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
所有生物都必须对环境的变化作出反应。例如,生长在葡萄上的酵母必须在发酵过程中经受住干旱、骤雨和酒精浓度的变化。作为对压力的反应,细胞改变其内部的组成和化学性质。一个突出的问题是细胞内部的变化是如何导致免受压力的保护的。核磁共振波谱(NMR)是一种可以提供细胞内蛋白质原子水平行为信息的技术。在这项研究中,核磁共振将用于测量细胞受到压力时蛋白质行为的变化。此外,本项目将促进小学教师和学生空间推理能力的训练。空间推理被广泛地定义为对复杂的三维物体进行可视化、心理操作和创造表征的能力。一个普遍的文化误解是空间推理能力是不可改变的;事实上,它们是stem相关技能中最容易训练的技能之一。通过针对小学生,该项目将有助于提高STEM的总体参与度,并减轻代表性不足群体在STEM方面的差距。细胞通过细胞内化学环境、蛋白质定位和动力学以及整体细胞质物理特性的大范围变化来响应环境扰动。所有这些反应都被认为是细胞存活所必需的。为了使应激反应蛋白的敏感性与应激条件下细胞环境的未知变化相协调,我们需要一个细胞内蛋白质行为的原子尺度读数。在本研究中,细胞内核磁共振实验将用于探索芽殖酵母的细胞内环境。芽殖酵母具有良好的遗传、环境和药理学扰动,可用于选择性地控制细胞应激反应的各个方面。通过核磁共振对溶液和细胞蛋白质行为的比较将用于确定蛋白质在细胞中如何变化以及细胞应激如何进一步影响蛋白质。核磁共振将用于绘制应激反应蛋白的原子水平变化,蛋白质片段库将用于确定应激反应的序列特异性。对酵母细胞的操作将用于确定导致这些变化的潜在化学扰动。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Loren Hough其他文献

Using NMR to probe the dynamics and properties of the C-terminal tubulin tails
  • DOI:
    10.1016/j.bpj.2021.11.2148
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Allison Whited;Genesis M. Ferrer;Emma L. Seidler;Kathryn P. Wall;Loren Hough
  • 通讯作者:
    Loren Hough
Characterization of Predicted Small Proteins
  • DOI:
    10.1016/j.bpj.2018.11.1019
  • 发表时间:
    2019-02-15
  • 期刊:
  • 影响因子:
  • 作者:
    Allison Whited;Christina Cleveland;Jeffre Allen;Irwin Jungreis;John Rinn;Loren Hough
  • 通讯作者:
    Loren Hough
Tubulin C-terminal tail regulation by intracellular pH
  • DOI:
    10.1016/j.bpj.2023.11.1222
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    A.M. Whited;Patrick DeLear;Ezekiel Thomas;Jeffre Allen;David Sept;Jeffrey K. Moore;Loren Hough
  • 通讯作者:
    Loren Hough
Frustration enables the liquid-liquid phase separation of nonspecifically interacting coiled-coil proteins
  • DOI:
    10.1016/j.bpj.2023.11.2717
  • 发表时间:
    2024-02-08
  • 期刊:
  • 影响因子:
  • 作者:
    Dominique Ramirez;Loren Hough;Michael Shirts
  • 通讯作者:
    Michael Shirts
Synthetic Mimics of the Nuclear Pore Complex
  • DOI:
    10.1016/j.bpj.2017.11.3407
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Laura Maguire;Michael Stefferson;Katherine Rainey;Nathan Crossette;Eric Verbeke;Meredith Betterton;Loren Hough
  • 通讯作者:
    Loren Hough

Loren Hough的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Kidney injury molecular(KIM-1)介导肾小管上皮细胞自噬在糖尿病肾病肾间质纤维化中的作用
  • 批准号:
    81300605
  • 批准年份:
    2013
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
Molecular Plant
  • 批准号:
    31224801
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
Molecular Plant
  • 批准号:
    31024802
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
Cellular & Molecular Immunology
  • 批准号:
    30824806
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Understanding the Molecular Mechanisms of Insect Cuticular Chitin Maintenance
职业:了解昆虫表皮几丁质维持的分子机制
  • 批准号:
    2338209
  • 财政年份:
    2024
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of tardigrade disordered proteins adapted to protect against environmental stress
职业:缓步动物无序蛋白质适应环境压力的分子机制
  • 批准号:
    2338323
  • 财政年份:
    2024
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of pH sensitive proteins, pathways, and cell behaviors
职业:pH 敏感蛋白的分子机制、通​​路和细胞行为
  • 批准号:
    2238694
  • 财政年份:
    2023
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms, algorithms and software for design and analysis of genome perturbation experiments
职业:用于设计和分析基因组扰动实验的分子机制、算法和软件
  • 批准号:
    2238831
  • 财政年份:
    2023
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Molecular and Cellular Mechanisms Underlying Circuit-Host Interactions
职业:电路-宿主相互作用的分子和细胞机制
  • 批准号:
    2143229
  • 财政年份:
    2022
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Mechanisms Controlling Signaling Reactions on Membranes through Molecular Assembly at Multiple Length Scales
职业:通过多长度尺度的分子组装控制膜上信号反应的机制
  • 批准号:
    2145852
  • 财政年份:
    2022
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Molecular Mechanisms Underlying Chemical Behavior of Pollutants in Heterogeneous Environmental Systems
职业:了解异质环境系统中污染物化学行为的分子机制
  • 批准号:
    2144591
  • 财政年份:
    2022
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Molecular Mechanisms Underlying Redox Chemistry in Electrochemical Cells from First Principles
职业:从第一原理开始研究电化学电池中氧化还原化学的分子机制
  • 批准号:
    2145144
  • 财政年份:
    2022
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Characterizing molecular mechanisms that drive life cycle transitions in the African trypanosome
职业:描述驱动非洲锥虫生命周期转变的分子机制
  • 批准号:
    2041395
  • 财政年份:
    2021
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
CAREER: Molecular mechanisms of ribonucleoprotein assembly
职业:核糖核蛋白组装的分子机制
  • 批准号:
    2047328
  • 财政年份:
    2021
  • 资助金额:
    $ 107.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了