CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
基本信息
- 批准号:1943584
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Individuals’ lives and societal outcomes are increasingly mediated by opaque machine learning algorithms chosen and run by multi-sided online platforms using private data. Although the platforms often claim that their algorithms take into consideration the interests of the sides and preserve privacy, these claims are not well-defined. Furthermore, the platforms’ algorithms also optimize for their own objectives, such as financial or user growth. The resulting algorithmic decision-making systems and their outcomes may be at odds with the interests of platform participants and societal values.The project is following a research agenda consisting of two main thrusts. The first aims to enable the deployment of differential privacy for data sharing in platform-specific contexts, so as to ensure rigorous privacy protections for platform participants while enabling the platform to pursue its objectives. We take advantage of platform-specific capabilities to develop learning-augmented and security-augmented frameworks for reasoning about and deploying differential privacy. The second research thrust investigates undesirable consequences of opaque optimizations and proposes definitions that could encode platform participants’ or societal desiderata regarding the outcomes of such optimization. It then analyzes algorithmic, systems, and policy approaches for achieving them and quantitatively evaluates the impact of enforcing such constraints.Both research thrusts advance the societally important goals of enabling data-driven innovation by multi-sided platforms while preserving privacy and fairness for their participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
个人的生活和社会结果越来越多地由使用私人数据的多边在线平台选择和运行的不透明机器学习算法来调节。尽管这些平台经常声称他们的算法考虑到了双方的利益并保护了隐私,但这些说法并没有得到很好的定义。此外,平台的算法还针对自己的目标进行优化,例如财务或用户增长。由此产生的算法决策系统及其结果可能与平台参与者的利益和社会价值观不一致。该项目遵循由两个主要目标组成的研究议程。第一个目标是在特定平台环境中为数据共享部署差异隐私,以确保对平台参与者的严格隐私保护,同时使平台能够实现其目标。我们利用平台特定的功能来开发学习增强和安全增强的框架,用于推理和部署差异隐私。第二个研究重点调查了不透明优化的不良后果,并提出了可以编码平台参与者或社会对这种优化结果的需求的定义。然后分析算法,系统,这两个研究方向都推进了通过多方面技术实现数据驱动创新这一具有社会重要性的目标,单边平台,同时保护参与者的隐私和公平性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值进行评估,被认为值得支持和更广泛的影响审查标准。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pushing the Boundaries of Private, Large-Scale Query Answering
- DOI:10.48550/arxiv.2302.04833
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Brendan Avent;A. Korolova
- 通讯作者:Brendan Avent;A. Korolova
Having your Privacy Cake and Eating it Too: Platform-supported Auditing of Social Media Algorithms for Public Interest
拥有隐私蛋糕并把它吃掉:平台支持的社交媒体算法审计以维护公共利益
- DOI:10.1145/3579610
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Imana, Basileal;Korolova, Aleksandra;Heidemann, John
- 通讯作者:Heidemann, John
"You Can't Fix What You Can't Measure": Privately Measuring Demographic Performance Disparities in Federated Learning
- DOI:10.48550/arxiv.2206.12183
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Marc Juárez;A. Korolova
- 通讯作者:Marc Juárez;A. Korolova
Institutional privacy risks in sharing DNS data
共享 DNS 数据的机构隐私风险
- DOI:10.1145/3472305.3472324
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Imana, Basileal;Korolova, Aleksandra;Heidemann, John
- 通讯作者:Heidemann, John
Fairness in matching under uncertainty
不确定性下匹配的公平性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Devic, Siddartha;Kempe, David;Sharan, Vatsal;Korolova, Aleksandra
- 通讯作者:Korolova, Aleksandra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aleksandra Korolova其他文献
Aleksandra Korolova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aleksandra Korolova', 18)}}的其他基金
CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
- 批准号:
2344925 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
SaTC: CORE: Medium: Collaborative Research: Understanding and Mitigating the Privacy and Societal Risks of Advanced Advertising Targeting and Tracking
SaTC:核心:媒介:协作研究:理解和减轻高级广告定位和跟踪的隐私和社会风险
- 批准号:
2333448 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SaTC: CORE: Medium: Collaborative Research: Understanding and Mitigating the Privacy and Societal Risks of Advanced Advertising Targeting and Tracking
SaTC:核心:媒介:协作研究:理解和减轻高级广告定位和跟踪的隐私和社会风险
- 批准号:
1916153 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CRII: SaTC: Democratizing Differential Privacy via Algorithms for Hybrid Models
CRII:SaTC:通过混合模型算法使差异隐私民主化
- 批准号:
1755992 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
- 批准号:
2339198 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318843 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
- 批准号:
2318844 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: SaTC: Towards Machine-learnable Enhancing Framework for Local Differential Privacy
职业:SaTC:面向本地差异隐私的机器学习增强框架
- 批准号:
2238680 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy-Preserving Wireless Communication: Fundamental Limits and Coding Schemes
职业:走向保护隐私的无线通信:基本限制和编码方案
- 批准号:
2401373 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Towards Privacy and Fairness in Multi-Sided Platforms
职业:在多边平台中实现隐私和公平
- 批准号:
2344925 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
Towards full lifecycle privacy protection on cloud
实现云端全生命周期隐私保护
- 批准号:
LP190100395 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Linkage Projects
CRII: SaTC: Towards Secure and Privacy-preserving Input on Augmented Reality Systems
CRII:SaTC:增强现实系统的安全和隐私保护输入
- 批准号:
2153397 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Towards Privacy Preserving Internet of Things
迈向保护物联网隐私
- 批准号:
RGPIN-2019-05434 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Towards Federated Learning over 5G Mobile Devices: High Efficiency, Low Latency, and Good Privacy
协作研究:CNS 核心:中:迈向 5G 移动设备上的联邦学习:高效率、低延迟和良好的隐私性
- 批准号:
2106589 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant














{{item.name}}会员




