CAREER: Towards a New Synthesis of Statistical Learning and Logical Reasoning
职业:迈向统计学习和逻辑推理的新综合
基本信息
- 批准号:1943641
- 负责人:
- 金额:$ 41.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decade, the field of artificial intelligence (AI) has evolved drastically, taking a more data-centric approach. The widespread success of machine learning raises the question of which AI tasks are amenable to pure learning, which tasks require classical symbolic reasoning, and whether we can benefit from a tighter integration of both approaches. The project studies this question, and concretely asks how ideas about automated reasoning and knowledge representation studied in traditional artificial intelligence are relevant to modern connectionist and statistical machine learning. It brings together expertise, techniques, insights, and strengths from several disparate fields that are usually studied in isolation: logical reasoning, probabilistic reasoning, knowledge representation, statistical learning, and deep learning. The unified perspective taken by this research has the potential to be transformative for the broader AI field and have a lasting impact on how we perceive the interaction between learning and reasoning. The research will make AI more effective by allow it to address a larger class of problems. More capable AI and machine learning methods will have significant scientific consequences, and broad impact in all segments of society, including healthcare, manufacturing, commerce, finance, entertainment, among others. The project helps convey this new understanding through integrated research and educational activities.More specifically, current reasoning paradigms are not able to fully exploit available data and are often brittle, while learning paradigms are often incapable of answering questions beyond the one task they were explicitly trained for. Finding a synthesis of learning and reasoning allows for learned representations that can be reasoned about, and even using reasoning and logic during learning, to enforce basic invariants and knowledge of the world. This project is structured along three research thrusts. The first thrust is to develop probabilistic and logistic circuits as a new machine learning model that simultaneously easy to learn, expressive, and has elegant properties that allow for tractable reasoning and learning. The second thrust looks at more advanced reasoning tasks about classifiers and generative world models, such as taking expected predictions when features are missing, or reasoning about sufficient conditions to explain classifiers. The ability to reason about classifiers, specifically, builds more trust in our AI systems as they are deployed, and helps to better understand their limitations. The third thrust studies how logical reasoning about continuous variables and arithmetic is used for probabilistic reasoning and statistical learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,人工智能(AI)领域发生了巨大的变化,采取了更加以数据为中心的方法。机器学习的广泛成功提出了一个问题,即哪些人工智能任务适合纯学习,哪些任务需要经典的符号推理,以及我们是否可以从这两种方法的更紧密集成中受益。该项目研究了这个问题,并具体询问了传统人工智能中研究的自动推理和知识表示的想法如何与现代连接主义和统计机器学习相关。它汇集了通常孤立研究的几个不同领域的专业知识,技术,见解和优势:逻辑推理,概率推理,知识表示,统计学习和深度学习。这项研究所采取的统一观点有可能对更广泛的人工智能领域产生变革性的影响,并对我们如何看待学习和推理之间的相互作用产生持久的影响。 这项研究将使人工智能更有效,使其能够解决更多的问题。更强大的人工智能和机器学习方法将产生重大的科学后果,并对社会的各个领域产生广泛的影响,包括医疗保健、制造业、商业、金融、娱乐等。该项目通过综合研究和教育活动帮助传达这种新的理解。更具体地说,当前的推理范式无法充分利用可用数据,并且通常很脆弱,而学习范式通常无法回答超出其明确训练的一项任务之外的问题。找到一个学习和推理的综合体,允许学习的表示可以被推理,甚至在学习过程中使用推理和逻辑,以执行基本的不变量和世界知识。这个项目的结构是沿着三个研究重点。第一个目标是开发概率和逻辑电路作为一种新的机器学习模型,同时易于学习,表达,并具有优雅的属性,允许易于处理的推理和学习。第二个重点是关于分类器和生成世界模型的更高级的推理任务,例如在特征缺失时进行预期预测,或者推理解释分类器的充分条件。具体来说,对分类器进行推理的能力可以在部署人工智能系统时建立更多的信任,并有助于更好地理解它们的局限性。第三个重点是研究如何将连续变量和算术的逻辑推理用于概率推理和统计学习。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Off-Policy Deep Reinforcement Learning with Analogous Disentangled Exploration
- DOI:
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Anji Liu;Yitao Liang;Guy Van den Broeck
- 通讯作者:Anji Liu;Yitao Liang;Guy Van den Broeck
Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits
- DOI:10.48550/arxiv.2302.08086
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Xuejie Liu;Anji Liu;Guy Van den Broeck;Yitao Liang
- 通讯作者:Xuejie Liu;Anji Liu;Guy Van den Broeck;Yitao Liang
Tractable Regularization of Probabilistic Circuits
概率电路的易处理正则化
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Liu, Anji;Van den Broeck, Guy
- 通讯作者:Van den Broeck, Guy
Lossless Compression with Probabilistic Circuits
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Anji Liu;S. Mandt;Guy Van den Broeck
- 通讯作者:Anji Liu;S. Mandt;Guy Van den Broeck
Probabilistic Generating Circuits
- DOI:
- 发表时间:2021-02
- 期刊:
- 影响因子:0
- 作者:Honghua Zhang;Brendan Juba;Guy Van den Broeck
- 通讯作者:Honghua Zhang;Brendan Juba;Guy Van den Broeck
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guy Van den Broeck其他文献
Compiling probabilistic logic programs into sentential decision diagrams
将概率逻辑程序编译成句子决策图
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jonas Vlasselaer;Joris Renkens;Guy Van den Broeck;L. D. Raedt - 通讯作者:
L. D. Raedt
A Tractable Inference Perspective of Offline RL
离线强化学习的易于处理的推理视角
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Xuejie Liu;Anji Liu;Guy Van den Broeck;Yitao Liang - 通讯作者:
Yitao Liang
Lifted Inference and Learning in Statistical Relational Models
- DOI:
- 发表时间:
2013-01 - 期刊:
- 影响因子:8.9
- 作者:
Guy Van den Broeck - 通讯作者:
Guy Van den Broeck
A I ] 2 8 M ay 2 01 7 Probabilistic Program Abstractions
AI ] 2 8 May 2 01 7 概率程序抽象
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Steven Holtzen;T. Millstein;Guy Van den Broeck - 通讯作者:
Guy Van den Broeck
An Algebraic Prolog for Reasoning about Possible Worlds
推理可能世界的代数序言
- DOI:
10.1609/aaai.v25i1.7852 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Angelika Kimmig;Guy Van den Broeck;L. D. Raedt - 通讯作者:
L. D. Raedt
Guy Van den Broeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guy Van den Broeck', 18)}}的其他基金
Collaborative Research: RI: AF: Medium: Exchanging Knowledge Beyond Data Between Human and Machine Learner
协作研究:RI:AF:媒介:在人类和机器学习者之间交换数据之外的知识
- 批准号:
1956441 - 财政年份:2020
- 资助金额:
$ 41.02万 - 项目类别:
Standard Grant
CRII: RI: Inference for Probabilistic Programs: A Symbolic Approach
CRII:RI:概率程序的推理:符号方法
- 批准号:
1657613 - 财政年份:2017
- 资助金额:
$ 41.02万 - 项目类别:
Standard Grant
BIGDATA: F: Open-World Foundations for Big Uncertain Data
BIGDATA:F:大不确定数据的开放世界基础
- 批准号:
1633857 - 财政年份:2016
- 资助金额:
$ 41.02万 - 项目类别:
Standard Grant
相似海外基金
Channeling Excited States Towards New Productive Photochemical Pathways
将激发态引导至新的高效光化学途径
- 批准号:
2350308 - 财政年份:2024
- 资助金额:
$ 41.02万 - 项目类别:
Standard Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 41.02万 - 项目类别:
ARC Future Fellowships
Towards widespread use of cardiac MRI using new affordable low magnetic field (0.55T) MRI scanner and AI
使用新型经济实惠的低磁场 (0.55T) MRI 扫描仪和 AI 实现心脏 MRI 的广泛使用
- 批准号:
2904562 - 财政年份:2024
- 资助金额:
$ 41.02万 - 项目类别:
Studentship
Flame quenching and Lean blow-off limits of new zero/low-carbon fuels towards delivering a green Aviation; a combined Modelling & Experimental study
新型零碳/低碳燃料的熄火和精益吹气限制,以实现绿色航空;
- 批准号:
EP/Y020839/1 - 财政年份:2024
- 资助金额:
$ 41.02万 - 项目类别:
Research Grant
Establishment of new UK/Canada Collaboration towards the Advancement of Magnetic Particle Imaging (MPI)
英国/加拿大建立新的合作关系以推动磁粒子成像 (MPI) 的发展
- 批准号:
MR/Y033795/1 - 财政年份:2024
- 资助金额:
$ 41.02万 - 项目类别:
Research Grant
New perspectives towards Woodall's Conjecture and the Generalised Berge-Fulkerson Conjecture
伍德尔猜想和广义伯奇-富尔克森猜想的新视角
- 批准号:
EP/X030989/1 - 财政年份:2024
- 资助金额:
$ 41.02万 - 项目类别:
Research Grant
State Transformation in Historical Syria: Towards New Middle Eastern Area Studies with Mixed Methods
历史上叙利亚的国家转型:混合方法的新中东地区研究
- 批准号:
23H00043 - 财政年份:2023
- 资助金额:
$ 41.02万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
$ 41.02万 - 项目类别:
Transforming Tourism on East Asian Islands: Towards New Spatial Creation in the Post-Corona Era
东亚岛屿旅游业转型:后电晕时代的新空间创造
- 批准号:
23H03644 - 财政年份:2023
- 资助金额:
$ 41.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inclusive Cross-sensory Social Play: Towards a new paradigm of assistive technology for early development of blind and visually impaired children
包容性跨感官社交游戏:为盲人和视障儿童的早期发展提供辅助技术的新范式
- 批准号:
EP/Y023676/1 - 财政年份:2023
- 资助金额:
$ 41.02万 - 项目类别:
Research Grant