CAREER: Uncovering the Impact of Traditional and Novel Chronic Stimulation Modalities on Neural Excitability and Native Neuronal Network Function

职业:揭示传统和新型慢性刺激方式对神经兴奋性和天然神经元网络功能的影响

基本信息

  • 批准号:
    1943906
  • 负责人:
  • 金额:
    $ 55.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The ability to selectively stimulate a small group of neurons has been long desired for basic neuroscience studies as well as for clinical applications. To address this need, the investigator has developed a wireless technology that can precisely stimulate a distinct population of neurons by electrical or light stimulation. Because a balance between excitatory and inhibitory neural activity is important for perception in the brain, a key question is how stimulation impacts this balance. An imbalance between excitatory and inhibitory neuronal activity can lead to cognitive dysfunctions and is a hallmark of autism spectrum disorder. Moreover, brain injuries such as traumatic brain injuries, stroke, and microelectrode implantation have also been shown to disrupt this balance. Therefore, the research goal of this CAREER project is to establish the relationship between different types of stimulation and their impact on excitability of neuronal populations. The project's educational goal is to train the next wave of investigators with the multidisciplinary skills needed to solve the chronic neural interface challenge. This will be achieved through: 1) integrating examples from this research into an outreach program to Underrepresented Minority Students that focuses on introducing the fundamental principles of the scientific method and engineering design controls and criteria and on demonstrating how science and engineering converge at the neural interface; 2) making neural interface knowledge more widely accessible by the formation of the virtual "Education in Biological and Neuroelectronic Interface Community" (eBioNIC.org) that will be a focal point for providing videos and other training materials; and 3) providing an early platform for hands-on education on integrating Neurobiology and Neural Engineering.The Investigator's long-term career vision is to seamlessly integrate the brain and technology in order to enable new approaches to studying long-standing neurobiology questions such as how to repair brain injuries and neurodegenerative diseases. Towards this vision, this CAREER project’s specific goals are to break through traditional limitations of neurostimulation by engineering wireless axons that use specific biomolecules to modulate the activity of a small population of neurons in the brain, and then apply this technology to modulate excitatory-inhibitory neuronal imbalances. The project will employ new optical technologies to solve long-standing questions on the relationship between stimulation technologies and changes to the brain’s excitatory-inhibitory balance. This will be achieved using optical and transgenic methods to determine the cell-type specificity of excitatory and inhibitory neuronal activity, an important parameter that can enhance our physiological understanding of the activated brain region. The project's guiding hypothesis is that different stimulation modalities will differentially alter spatio-temporal excitatory and inhibitory neuronal activity, which will in turn alter the long-term excitability of nearby neurons in different capacities. The Research Plan is organized under two objectives. THE FIRST Objective is to further engineer this wireless stimulation technology to reliably and repeatably release specific biomolecules including neurotransmitters. Coating technologies will be applied to the wireless axons to release biomolecules during stimulation and recharge by drawing upon endogenously produced biomolecules. THE SECOND Objective is to investigate how stimulation with electrical, optical, wireless-axon, and wireless neurochemical modalities impacts long-term excitatory and inhibitory neuronal excitability using in vivo 2-photon microscopy and genetically encoded fluorescent indicators. In vivo images will be collected from awake head-fixed mice at increasing intervals daily for two weeks and then once a week until 12 weeks. The number, distance, timing and neuronal subtype densities before, during and after electrical stimulation will be examined over time. The method enables tracking of stimulation-induced dynamic changes with high spatial resolution near the electrodes. Research outcomes are expected to have a significant impact on the future design of neural interfaces through the engineering of chronic selective neural stimulation tools with ultra-small free-floating implants that will provide scientists with a new tool for interrogating neuronal networks and creating different sensations in BCIs and through visualization of how stimulation with electrical, optical, wireless, and wireless neurochemical modalities impacts long-term excitatory and inhibitory neural excitability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
选择性刺激一小群神经元的能力长期以来一直是基础神经科学研究和临床应用所期望的。为了满足这一需求,研究人员开发了一种无线技术,可以通过电或光刺激精确刺激不同的神经元群体。 由于兴奋性和抑制性神经活动之间的平衡对于大脑中的感知很重要,因此一个关键问题是刺激如何影响这种平衡。 兴奋性和抑制性神经元活动之间的不平衡可导致认知功能障碍,并且是自闭症谱系障碍的标志。 此外,脑损伤如创伤性脑损伤、中风和微电极植入也被证明会破坏这种平衡。因此,本CAREER项目的研究目标是建立不同类型的刺激及其对神经元群体兴奋性的影响之间的关系。 该项目的教育目标是培养下一波具有解决慢性神经接口挑战所需的多学科技能的调查人员。这将通过以下方式实现:1)将本研究的例子整合到针对代表性不足的少数民族学生的外展计划中,重点介绍科学方法和工程设计控制和标准的基本原则,并展示科学和工程如何在神经接口处融合; 2)通过建立虚拟的“生物和神经电子接口教育社区”,使神经接口知识更广泛地获得(eBioNIC.org),将成为提供视频和其他培训材料的焦点;以及3)为整合神经生物学和神经工程学的实践教育提供早期平台。研究者的长期职业愿景是无缝整合大脑和技术,以实现研究长期存在的神经生物学问题的新方法,例如如何修复脑损伤和神经退行性疾病。为了实现这一愿景,这个CAREER项目的具体目标是通过设计无线轴突来突破神经刺激的传统限制,这些轴突使用特定的生物分子来调节大脑中一小部分神经元的活动,然后应用这种技术来调节兴奋-抑制神经元的不平衡。该项目将采用新的光学技术来解决长期存在的问题,即刺激技术与大脑兴奋-抑制平衡变化之间的关系。这将使用光学和转基因方法来确定兴奋性和抑制性神经元活动的细胞类型特异性,这是一个重要的参数,可以增强我们对激活的大脑区域的生理理解。该项目的指导假设是,不同的刺激方式将差异地改变时空兴奋性和抑制性神经元活动,这反过来又会改变附近不同能力神经元的长期兴奋性。 研究计划是根据两个目标组织的。第一个目标是进一步设计这种无线刺激技术,以可靠和可重复地释放特定的生物分子,包括神经递质。涂层技术将应用于无线轴突,以在刺激过程中释放生物分子,并通过利用内源性产生的生物分子进行充电。第二个目的是研究如何刺激与电,光,无线轴突,无线神经化学方式的影响长期兴奋性和抑制性神经元兴奋性使用体内双光子显微镜和遗传编码的荧光指标。 将从清醒的头部固定小鼠中以增加的间隔每天收集体内图像,持续两周,然后每周一次,直到12周。随着时间的推移,将检查电刺激之前、期间和之后的数量、距离、时间和神经元亚型密度。 该方法使得能够在电极附近以高空间分辨率跟踪刺激诱导的动态变化。研究成果预计将对未来的神经接口设计产生重大影响,通过工程慢性选择性神经刺激工具与超小型自由浮动植入物,这将为科学家提供一种新的工具,用于询问神经网络和创造不同的感觉在脑机接口,并通过可视化如何刺激与电,光,无线,该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges and opportunities of advanced gliomodulation technologies for excitation-inhibition balance of brain networks.
  • DOI:
    10.1016/j.copbio.2021.10.008
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Chen K;Stieger KC;Kozai TD
  • 通讯作者:
    Kozai TD
The temporal pattern of intracortical microstimulation pulses elicits distinct temporal and spatial recruitment of cortical neuropil and neurons.
  • DOI:
    10.1088/1741-2552/abc29c
  • 发表时间:
    2021-01-25
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Eles JR;Stieger KC;Kozai TDY
  • 通讯作者:
    Kozai TDY
Recent advances in neural interfaces-Materials chemistry to clinical translation.
  • DOI:
    10.1557/mrs.2020.195
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Bettinger CJ;Ecker M;Kozai TDY;Malliaras GG;Meng E;Voit W
  • 通讯作者:
    Voit W
Intracortical microstimulation pulse waveform and frequency recruits distinct spatiotemporal patterns of cortical neuron and neuropil activation.
  • DOI:
    10.1088/1741-2552/ac5bf5
  • 发表时间:
    2022-03-31
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Stieger, Kevin C.;Eles, James R.;Ludwig, Kip A.;Kozai, Takashi D. Y.
  • 通讯作者:
    Kozai, Takashi D. Y.
In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation.
  • DOI:
    10.1016/j.biomaterials.2022.121784
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    14
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takashi Kozai其他文献

Understanding spatiotemporal dynamics of intracortical microstimulation using two-photon microscopy in the sensory cortices of mice
  • DOI:
    10.1016/j.brs.2023.01.198
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Takashi Kozai
  • 通讯作者:
    Takashi Kozai
Astrocytes modulate stimulation-induced neural activity during intracortical microstimulation
在皮层内微刺激期间,星形胶质细胞调节刺激诱导的神经活动
  • DOI:
    10.1016/j.brs.2024.12.783
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Kevin Stieger;Alberto Vazquez;Takashi Kozai
  • 通讯作者:
    Takashi Kozai

Takashi Kozai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Complex Causal Moderated Mediation Analysis in Multisite Randomized Trials: Uncovering the Black Box Underlying the Impact of Educational Interventions on Math Performance
职业:多地点随机试验中的复杂因果调节中介分析:揭示教育干预对数学成绩影响的黑匣子
  • 批准号:
    2337612
  • 财政年份:
    2024
  • 资助金额:
    $ 55.33万
  • 项目类别:
    Continuing Grant
National research impact policies: Uncovering the ‘value’ in evaluation
国家研究影响力政策:揭示评估中的“价值”
  • 批准号:
    DP240101834
  • 财政年份:
    2024
  • 资助金额:
    $ 55.33万
  • 项目类别:
    Discovery Projects
Uncovering the mechanism and impact of novel genetic and epigenetic promoter alterations on tissue-specific mismatch repair deficient cancers
揭示新型遗传和表观遗传启动子改变对组织特异性错配修复缺陷癌症的机制和影响
  • 批准号:
    470018
  • 财政年份:
    2022
  • 资助金额:
    $ 55.33万
  • 项目类别:
    Operating Grants
Uncovering the Impact of Diet on the Human Circadian Timing System
揭示饮食对人类昼夜节律系统的影响
  • 批准号:
    10602475
  • 财政年份:
    2022
  • 资助金额:
    $ 55.33万
  • 项目类别:
Uncovering the Impact of Diet on the Human Circadian Timing System
揭示饮食对人类昼夜节律系统的影响
  • 批准号:
    10443069
  • 财政年份:
    2022
  • 资助金额:
    $ 55.33万
  • 项目类别:
Uncovering functional genetic variants that impact RNA binding protein-RNA interactions
发现影响 RNA 结合蛋白-RNA 相互作用的功能性遗传变异
  • 批准号:
    532942-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 55.33万
  • 项目类别:
    Postdoctoral Fellowships
Uncovering the Wider Impact of COVID-19 Measures on the Lives of Children with Complex Care Needs and their Families
揭示 COVID-19 措施对有复杂护理需求的儿童及其家人的生活的更广泛影响
  • 批准号:
    460258
  • 财政年份:
    2021
  • 资助金额:
    $ 55.33万
  • 项目类别:
    Operating Grants
Uncovering the Impact of Diet on the Human Circadian Timing System
揭示饮食对人类昼夜节律系统的影响
  • 批准号:
    10475344
  • 财政年份:
    2021
  • 资助金额:
    $ 55.33万
  • 项目类别:
Uncovering the social processes of impact measurement: Insights from the evaluation of United Kingdom's Coventry City of Culture 2021
揭示影响力衡量的社会过程:2021 年英国考文垂文化城评估的见解
  • 批准号:
    AH/V015435/1
  • 财政年份:
    2021
  • 资助金额:
    $ 55.33万
  • 项目类别:
    Fellowship
Uncovering functional genetic variants that impact RNA binding protein-RNA interactions
发现影响 RNA 结合蛋白-RNA 相互作用的功能性遗传变异
  • 批准号:
    532942-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 55.33万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了