CAREER: Coarse-grained Theory and Simulation of Ion-containing Liquids: Study of Ion Solvation by Polymers and Ionic Liquids and between Nanoparticles

职业:含离子液体的粗粒理论和模拟:聚合物和离子液体以及纳米颗粒之间的离子溶剂化研究

基本信息

  • 批准号:
    1944211
  • 负责人:
  • 金额:
    $ 49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER project supports research and education to study properties of liquids containing charged molecules. This project is focused on advancing understanding of how charged molecules, also known as ions, are surrounded by liquid molecules. This solvation process is a crucial step in making novel materials for emerging technologies; the lithium-ion polymer battery is one example. Existing computer simulations are unable to access the scales of length and time required for an adequate understanding of ion solvation.In this project, the PI will develop simplified computational models, called coarse-grained models, which represent units containing multiple atoms as effective particles with effective interactions. This procedure reduces the computational intensity of simulations making them tractable, but at the expense of some accuracy. This method will enable more straightforward identification of the key parameters and general mechanisms of ion solvation in polymers, which are long chain-like molecules. The project is aimed to advance the current state-of-the-art of molecular simulations. The knowledge acquired in this study will also help to refine existing theory at the level of atoms and associated simulation methods. Using the developed methods, the PI will also study the role of various nanoparticles in ion solvation. The education component involves framing a pedagogy for both college and high school students, in which students can develop scientific problem-solving skills and cultivate interdisciplinary approaches to problems using computer simulations and visualization. Education objectives will be achieved through utilizing a combination of programming languages and open-source software with an aim to help students visualize mathematical expressions and bridge the gap between practice and theory while enriching their programming skills. The PI also aims to use education innovations developed in this CAREER project to bridge the gap in education between soft- and hard-condensed matter physics. To extend the reach of the project, the PI and his group will collaborate with a K-12 educator to develop and hold short summer programs on topics related to this research. These programs are designed to provide a taste of soft-matter physics to local secondary school students using open-source software, such as PhET and Physlets, and simulation techniques, along with introductory programming. Ultimately, the aim is to develop, evaluate, and disseminate these outreach program resources. TECHNICAL SUMMARYThis CAREER project supports research and education to study the thermodynamic and electrochemical properties of ion-containing liquids. When liquid mixtures, polymers, different time and length scales, and significant spatial inhomogeneity of dielectric responses appear together, electrostatic interactions become amazingly intricate making understanding ion-containing liquids challenging.This study is aimed to provide a deeper understanding of ion solvation at molecular and atomistic scales to enable the design of novel electrochemical materials for next-generation technologies. The PI will focus mainly on the solvation energy of ions and the solvation mechanism in polymers and ionic liquids. The solvation mechanism of nanometer-sized solid bodies, such as metal oxide nanoparticles and quantum dots, will also be investigated with an aim to evaluate the effect of Lifshitz forces. The PI will investigate the hypothesis that the key factors in determining physical properties of ion-containing liquids are: (1) the strong fluctuation of electrostatic potentials, (2) the spatial inhomogeneity of the dielectric response, (3) the synergy among specific interactions such as hydrogen bonding and aromatic interactions, and (4) van der Waals forces from solid bodies. The complexity of polymers, such as chain architecture and chain connectivity, often makes understanding the physical properties that arise from these factors challenging. To address this issue, the PI will develop coarse-grained molecular simulations by connecting dipolar and quadrupolar monomeric units. The PI will also develop effective force fields between uncharged nanoparticles, which account for the molecular interactions of polyelectrolytes and ionic liquids.The proposed education plan seeks to frame a pedagogy for soft-matter sciences in physics. The plan will use open-source software such as PhET, Physlets, and LAMMPS that can be executed on standard computers to ensure wide accessibility. The PI’s main aim is to minimize a gradually surging concern in physics education, specifically, ‘‘the gap in education between hard- and soft-condensed matter physics.’’ To further the impact of the CAREER project, the PI and his group will hold short summer programs based on the PI’s expertise to provide a taste of soft-matter physics to local secondary schools. Developed and delivered in coordination with a K-12 education specialist, these outreach sessions will use open-source software, such as PhET and Physlets, and associated simulation techniques along with introductory programming. The aim of the outreach component is to develop, evaluate, and disseminate resources for use in similar programs nationwide.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结这个职业项目支持研究和教育,以研究含有带电分子的液体的性质。该项目的重点是推进对带电分子(也称为离子)如何被液体分子包围的理解。这种溶剂化过程是为新兴技术制造新材料的关键步骤;锂离子聚合物电池就是一个例子。现有的计算机模拟无法获得足够理解离子溶剂化所需的长度和时间尺度。在本项目中,PI将开发简化的计算模型,称为粗粒度模型,该模型将包含多个原子的单元表示为具有有效相互作用的有效粒子。这个过程降低了模拟的计算强度,使其易于处理,但以牺牲一些精度为代价。这种方法将能够更直接地识别聚合物中离子溶剂化的关键参数和一般机制,聚合物是长链状分子。该项目旨在推进当前最先进的分子模拟。在这项研究中获得的知识也将有助于完善现有的理论在原子和相关的模拟方法的水平。使用开发的方法,PI还将研究各种纳米粒子在离子溶剂化中的作用。教育部分涉及为大学和高中学生制定教学法,学生可以在其中培养科学解决问题的技能,并培养使用计算机模拟和可视化解决问题的跨学科方法。教育目标将通过利用编程语言和开源软件的组合来实现,旨在帮助学生可视化数学表达式,弥合实践与理论之间的差距,同时丰富他们的编程技能。PI还旨在利用在这个职业项目中开发的教育创新来弥合软凝聚态物理和硬凝聚态物理之间的教育差距。为了扩大该项目的范围,PI和他的团队将与K-12教育工作者合作,开发和举办与本研究相关主题的短期暑期课程。这些方案旨在利用PhET和Phylets等开源软件和模拟技术,以及沿着入门编程,向当地中学生提供软物质物理学的体验。最终,目标是开发,评估和传播这些推广计划资源。技术总结这个职业项目支持研究和教育,以研究含离子液体的热力学和电化学性质。当液体混合物、聚合物、不同的时间和长度尺度以及介电响应的显著空间不均匀性同时出现时,静电相互作用变得非常复杂,使得理解含离子液体具有挑战性。本研究旨在提供分子和原子尺度下离子溶剂化的更深入理解,从而为下一代技术设计新型电化学材料。PI将主要集中在离子的溶剂化能和聚合物和离子液体中的溶剂化机理。纳米尺寸的固体,如金属氧化物纳米颗粒和量子点的溶剂化机制也将被研究,目的是评估Lifshitz力的影响。PI将研究以下假设:决定含离子液体物理性质的关键因素是:(1)静电势的强烈波动,(2)介电响应的空间不均匀性,(3)特定相互作用(如氢键和芳族相互作用)之间的协同作用,以及(4)固体的货车范德华力。聚合物的复杂性,如链结构和链连接性,通常使理解这些因素引起的物理性质具有挑战性。为了解决这个问题,PI将通过连接偶极和四极单体单元来开发粗粒度的分子模拟。PI还将开发不带电纳米粒子之间的有效力场,这可以解释聚电解质和离子液体的分子相互作用。拟议的教育计划旨在构建物理学中软物质科学的教学法。该计划将使用PhET、Physlets和LAMMPS等开源软件,这些软件可以在标准计算机上执行,以确保广泛的可访问性。PI的主要目标是尽量减少物理教育中逐渐高涨的关注,特别是“硬凝聚态物理和软凝聚态物理之间的教育差距”。为了进一步扩大CAREER项目的影响,PI和他的团队将根据PI的专业知识举办短期暑期课程,为当地中学提供软物质物理的体验。这些外展课程将与K-12教育专家协调开发和交付,将使用PhET和Phylets等开源软件以及相关的模拟技术沿着介绍性编程。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibition of Lithium Dendrite Growth with Highly Concentrated Ions: Cellular Automaton Simulation and Surrogate Model with Ensemble Neural Networks
  • DOI:
    10.1039/d1me00150g
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Tong Gao;Ziwei Qian;Hongbo Chen;R. Shahbazian‐Yassar;I. Nakamura
  • 通讯作者:
    Tong Gao;Ziwei Qian;Hongbo Chen;R. Shahbazian‐Yassar;I. Nakamura
Polarization of ionic liquid and polymer and its implications for polymerized ionic liquids: An overview towards a new theory and simulation
  • DOI:
    10.1002/pol.20210330
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Tongtong Gao;Jester N. Itliong;S. Kumar;Zackerie W Hjorth;I. Nakamura
  • 通讯作者:
    Tongtong Gao;Jester N. Itliong;S. Kumar;Zackerie W Hjorth;I. Nakamura
Surrogate molecular dynamics simulation model for dielectric constants with ensemble neural networks
使用集成神经网络介电常数的替代分子动力学模拟模型
  • DOI:
    10.1557/s43579-022-00283-5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Gao, Tong;Shock, Cameron J.;Stevens, Mark J.;Frischknecht, Amalie L.;Nakamura, Issei
  • 通讯作者:
    Nakamura, Issei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Issei Nakamura其他文献

Effects of the Dielectric Response of Single-Component Liquids and Liquid Mixtures on Electrochemical Properties between Charged Plates
单组分液体和液体混合物的介电响应对带电板间电化学性能的影响
  • DOI:
    10.1021/acs.jpcc.5b06675
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hongbo Chen;Issei Nakamura
  • 通讯作者:
    Issei Nakamura
「機能性分子設計に基づく蛋白質の蛍光ラベル化」蛍光イメージング/ MRIプローブの開発
“基于功能分子设计的蛋白质荧光标记”荧光成像/MRI探针开发
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hidekazu Ishitobi;Issei Nakamura;Norihiko Hayazawa;Zouheir Sekkat;Satoshi Kawata;水上進・菊地和也
  • 通讯作者:
    水上進・菊地和也
Direct Access to 9/6‐Fused Cycles via Sequential Hydride Shift Mediated Double C(emsp/emsup3/sup)−H Bond Functionalization
通过顺序氢化物迁移介导的双 C(3)−H 键官能化直接合成 9/6-稠环
  • DOI:
    10.1002/adsc.202201354
  • 发表时间:
    2023-02-21
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Issei Nakamura;Masahiro Anada;Shunsuke Sueki;Kosho Makino;Keiji Mori
  • 通讯作者:
    Keiji Mori
Whack-a-mole (WAM) model which we can estimate the biological effect caused by radiation-exposure
打地鼠(WAM)模型,我们可以估计辐射暴露引起的生物效应
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    3.Yuichiro Manabe1;Takahiro Wada;Yuichi Tsunoyama;Hiroo Nakajima;Issei Nakamura;Masako Bando.
  • 通讯作者:
    Masako Bando.
光のランダム現象を応用した超高速物理乱数生成器の研究開発の最新動向
利用光随机现象的超高速物理随机数发生器的最新研发动态
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hidekazu Ishitobi;Issei Nakamura;Norihiko Hayazawa;Zouheir Sekkat;Satoshi Kawata;水上進・菊地和也;内田淳史
  • 通讯作者:
    内田淳史

Issei Nakamura的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Coarse-Grained Modelling of DNA-Protein Interactions
DNA-蛋白质相互作用的粗粒度建模
  • 批准号:
    2888934
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
  • 批准号:
    2316666
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Fellowship Award
Coarse-Grained Simulation of Biosurfactants for Risk Assessment
用于风险评估的生物表面活性剂的粗粒度模拟
  • 批准号:
    2889387
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Studentship
Analysis and development of the hierarchical model of the regional economy by coarse-grained firm activities using geographic information
利用地理信息分析和开发粗粒度企业活动的区域经济分层模型
  • 批准号:
    23KJ0921
  • 财政年份:
    2023
  • 资助金额:
    $ 49万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
ExCALIBUR HES Exploring Coarse Grained Reconfigurable Architectures (CGRAs)
ExCALIBUR HES 探索粗粒度可重构架构 (CGRA)
  • 批准号:
    EP/X031837/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Research Grant
Coarse-grained Simulation Study on Polynucleotide Delivery to Treat Lung Diseases
多核苷酸递送治疗肺部疾病的粗粒度模拟研究
  • 批准号:
    576036-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
  • 批准号:
    2323108
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
Configurable numerical precision for coarse-grained reconfigurable arrays (CGRAs)
粗粒度可重构阵列 (CGRA) 的可配置数值精度
  • 批准号:
    572681-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    University Undergraduate Student Research Awards
Combining Deep Learning and Coarse Grained Simulation Methods to Study High-Dimensional NanoBiophysical Systems
结合深度学习和粗粒度模拟方法来研究高维纳米生物物理系统
  • 批准号:
    RGPIN-2020-07145
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Separating the Climate and Weather of River Channels: Characterizing Dynamics of Coarse-Grained River Channel Response to Perturbations Across Scales
合作研究:分离河道的气候和天气:表征粗粒度河道对跨尺度扰动响应的动态
  • 批准号:
    2220504
  • 财政年份:
    2022
  • 资助金额:
    $ 49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了