CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers

职业:热塑性弹性体力学的机器学习粗粒度建模

基本信息

  • 批准号:
    2323108
  • 负责人:
  • 金额:
    $ 59.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2026-10-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will support fundamental research to understand complex mechanical behaviors of thermoplastic elastomers (TPEs). Biodegradable TPEs are promising recyclable and sustainable polymers with minimal environmental impact. They have the potential to be used as protective coatings for cell phones, artificial muscles for soft robotics, and polymer electrolytes for batteries. However, few of these applications have been effectively realized due to the limited understanding of TPEs' synthesis-structure-property relation. This research project aims to understand and quantify the link between synthesis, microstructure, and mechanical property of TPEs, with the help of multi-scale computational modeling, data science (machine learning), and experimental validation. With tailored mechanical properties, these biodegradable and environmentally friendly polymers can be widely used to enable an array of novel structural and device applications, alleviating the plastic pollution crisis. The project includes an education and outreach plan to train diverse groups of next-generation engineers through a variety of avenues: production of educational movies for the general public and K-12 students, engineering education for K-12 students through Pre-Engineering and Explore Engineering Programs, and providing research experience for undergraduate and graduate students, especially the underrepresented groups, through internships at industries and national labs. The research objective of this project is to formulate a machine-learned coarse-grained model for TPEs with thermodynamic consistency, temperature transferability, and representability. TPEs are segmented copolymers composed of hard segments and soft segments, forming a two-phase microstructure. Thus, the machine-learned coarse-grained model can be used to understand microphase separation and its contribution to mechanical behaviors of TPEs, leading to the well-defined synthesis-structure-property relation. Specifically, this project aims to: 1) establish the machine-learned coarse-grained model for TPEs through deep neural networks and an active learning scheme; 2) integrate coarse-grained molecular simulations and constitutive modeling to achieve a meaningful structure-property relation of TPEs; 3) explore a novel class of sequence-defined TPEs with tailored microstructures and mechanical properties. The fundamental understanding of the synthesis-structure-property relationship will highlight a clear design path for experimentalists to utilize biodegradable TPEs for a broad range of applications, e.g., sound and vibration damping materials, shape-memory materials, and adaptive solar control materials. This computational framework can be readily adapted and generalized to many other polymeric materials for understanding their structure-property relations, such as fatigue-resistant hydrogels and protein-mimetic polymers, with phase-separated microstructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展(CAREER)补助金将支持基础研究,以了解热塑性弹性体(TPE)的复杂机械行为。可生物降解的TPE是有前途的可回收和可持续的聚合物,对环境的影响最小。它们有可能被用作手机的保护涂层,软机器人的人造肌肉和电池的聚合物电解质。然而,由于对热塑性弹性体合成-结构-性能关系的认识有限,这些应用很少得到有效实现。该研究项目旨在了解和量化TPE的合成,微观结构和机械性能之间的联系,借助多尺度计算建模,数据科学(机器学习)和实验验证。这些可生物降解和环保的聚合物具有定制的机械性能,可广泛用于实现一系列新型结构和设备应用,缓解塑料污染危机。该项目包括一个教育和推广计划,通过各种途径培训不同群体的下一代工程师:为公众和K-12学生制作教育电影,通过预工程和探索工程计划为K-12学生提供工程教育,并为本科生和研究生提供研究经验,特别是代表性不足的群体,通过在工业和国家实验室实习。本计画的研究目标是建立一个具有热力学一致性、温度传递性及可表示性的热塑性弹性体机器学习粗粒模型。TPE是由硬链段和软链段组成的嵌段共聚物,形成两相微结构。因此,机器学习的粗粒度模型可用于理解微相分离及其对TPE力学行为的贡献,从而得到定义明确的合成-结构-性能关系。具体而言,该项目旨在:1)通过深度神经网络和主动学习方案建立TPE的机器学习粗粒度模型; 2)整合粗粒度分子模拟和本构建模,以实现TPE的有意义的结构-性能关系; 3)探索一类具有定制微观结构和力学性能的新型序列定义的TPE。对合成-结构-性能关系的基本理解将为实验人员提供一条清晰的设计路径,以便将可生物降解的TPE用于广泛的应用,例如,声音和振动阻尼材料、形状记忆材料和自适应阳光控制材料。这个计算框架可以很容易地适应和推广到许多其他聚合物材料,以了解它们的结构-性能关系,如耐疲劳水凝胶和蛋白质模拟聚合物,与相分离microstructures.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating structure and dynamics of unentangled poly(dimethyl- co -diphenyl)siloxane via molecular dynamics simulation
通过分子动力学模拟研究未缠结的聚(二甲基-共-二苯基)硅氧烷的结构和动力学
  • DOI:
    10.1039/d3sm00509g
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xian, Weikang;He, Jinlong;Maiti, Amitesh;Saab, Andrew P.;Li, Ying
  • 通讯作者:
    Li, Ying
Unified machine learning protocol for copolymer structure-property predictions.
  • DOI:
    10.1016/j.xpro.2022.101875
  • 发表时间:
    2022-12-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tao, Lei;Arbaugh, Tom;Byrnes, John;Varshney, Vikas;Li, Ying
  • 通讯作者:
    Li, Ying
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ying Li其他文献

Dynamic changes of HVR1 quasispecies in chronic hepatitis C after IFN therapy
慢性丙型肝炎IFN治疗后HVR1准种的动态变化
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lin Zhang;G. Zhao;Ying Li;Li
  • 通讯作者:
    Li
Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption
轻松制造气泡增强型柔性生物气凝胶,实现高效且可回收的油吸附
  • DOI:
    10.1016/j.cej.2020.126240
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Qiaozhi Wang;Yan Qin;Chunlong Xue;Haoran Yu;Ying Li
  • 通讯作者:
    Ying Li
Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis
分级金属拉胀凹入蜂窝的压缩行为:实验和有限元分析
  • DOI:
    10.1016/j.msea.2019.04.116
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dengbao Xiao;Zhichao Dong;Ying Li;Wenwang Wu;Daining Fang
  • 通讯作者:
    Daining Fang
Effects of Event-Related Centrality on Concept Accessibility
事件相关中心性对概念可及性的影响
  • DOI:
    10.1080/01638530701226204
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    L. Mo;Hongmin Chen;Ying Li;Zhe Chen;Xianyou He
  • 通讯作者:
    Xianyou He
The Efficacy and Neural Correlates of ERP-based Therapy for OCD & TS: A Systematic Review and Meta-Analysis.
基于 ERP 的强迫症治疗的疗效和神经相关性
  • DOI:
    10.37766/inplasy2021.12.0112
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Junjuan Yan;Li;Mengyu Wang;Yonghua Cui;Ying Li
  • 通讯作者:
    Ying Li

Ying Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ying Li', 18)}}的其他基金

CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
  • 批准号:
    2332276
  • 财政年份:
    2024
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2313746
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Continuing Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
  • 批准号:
    2326072
  • 财政年份:
    2023
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels
合作研究:纳米复合水凝胶的界面自修复
  • 批准号:
    2314424
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
  • 批准号:
    2205007
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Continuing Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
  • 批准号:
    2313754
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Continuing Grant
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
  • 批准号:
    2326802
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
  • 批准号:
    2316200
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
  • 批准号:
    2153894
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Continuing Grant
Elucidating the interplay between two chromatin regulators HDA8 and ELP3 in dynamic control of primary and secondary metabolic networks
阐明两个染色质调节因子 HDA8 和 ELP3 在初级和次级代谢网络动态控制中的相互作用
  • 批准号:
    2123470
  • 财政年份:
    2021
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Non-Invasive Machine Learned Device to Personalize Arrhythmia Therapy
用于个性化心律失常治疗的非侵入性机器学习设备
  • 批准号:
    10468565
  • 财政年份:
    2022
  • 资助金额:
    $ 59.29万
  • 项目类别:
Development of machine-learned electron correlation method considering nonlocal correlation and relativistic effect
考虑非局域相关和相对论效应的机器学习电子相关方法的发展
  • 批准号:
    21K05002
  • 财政年份:
    2021
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards the Development of Reactive Machine-Learned Potentials for Describing Chemistry in Solution
开发用于描述溶液中化学反应的机器学习潜力
  • 批准号:
    2638399
  • 财政年份:
    2021
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Studentship
EAGER: Requirements Domain Specifications for Machine-Learned Software Components
EAGER:机器学习软件组件的需求领域规范
  • 批准号:
    2124606
  • 财政年份:
    2021
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
  • 批准号:
    2046751
  • 财政年份:
    2021
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
'Bind, Sealed, Delivered': machine-learned indicators of mucoadhesive binding in polymers for drug delivery
“结合、密封、递送”:用于药物递送的聚合物中粘膜粘附结合的机器学习指标
  • 批准号:
    566136-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Structure and symmetry in machine-learned molecular force fields
机器学习分子力场的结构和对称性
  • 批准号:
    2436342
  • 财政年份:
    2020
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Studentship
Machine Learned Potentials for In2O3
In2O3 的机器学习潜力
  • 批准号:
    2468419
  • 财政年份:
    2020
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Studentship
SBIR Phase II: A Therapeutic Machine-Learned Triage Application For Early Detection and Triage of COPD Exacerbations
SBIR 第二阶段:用于早期检测和分诊 COPD 恶化的机器学习分诊治疗应用
  • 批准号:
    1950994
  • 财政年份:
    2020
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
RI: Small: Robustness and Confidence in Machine-Learned Systems
RI:小:机器学习系统的稳健性和信心
  • 批准号:
    2006777
  • 财政年份:
    2020
  • 资助金额:
    $ 59.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了