CAREER: Duality and Stability in Complex State-Dependent Networked Dynamics

职业:复杂的状态相关网络动态中的二元性和稳定性

基本信息

项目摘要

Many of the current challenges in science and engineering are related to complex networks, and multiagent network systems are currently the focal point of many new applications. Such applications relate to the growing popularity of online social networks: the analysis of large-scale network data sets; problems that arise from interactions among agents in political, economic, and biological systems; and the expansion of power and wireless networks in our daily lives. Despite conventional methods for the analysis of multiagent network systems, the existing results have shortcomings to address realistic situations where there is a strong interdependence between the communication network structure and the agents’ behavior/decisions. This work promises to bring together several engineering and mathematical tools such as control, optimization, and game theory, to undertake a systematic approach to the analysis of the behavior of agents interacting over complex dynamic networks. The proposed work will provide key technologies to enable the deployment and analysis of large-scale, secure and efficient multiagent networked systems. The techniques to be developed are expected to provide an unprecedented understanding of the influence of heterogeneity in multiagent networked systems, such as opinion formation in social networks and robotic rendezvous. Research to be undertaken will lead to new economic and engineering design policies such as efficient resource allocation and optimal security decisions. The outcome of the research will advance the state of knowledge in several areas, including distributed control and optimization, socio-economic networks, and network security. This project will contribute toward enhancing our ability to understand the evolution of strategic relationships in dynamic networks and to ensure cyber-physical security by safeguarding networks against malicious adversarial interventions, thus benefiting long-term US defense interests. This project will be focused on duality-based stability and convergence analysis of multiagent networked decision systems with state-dependent switching topologies. These systems become further complicated once one accounts for asymmetry or heterogeneity of the underlying agent-network dynamics, and this class of problems have entailed longstanding challenges in control, social sciences, and many other related fields. This transformative research will provide the necessary mathematical foundations to extend the existing results on multiagent systems from the static homogeneous setting to highly dynamic heterogeneous environments. The results will be leveraged to analyze several major applications such as devising efficient resource allocation algorithms and developing security strategies over highly dynamic networks. Specific goals of this research include i) unconventional analysis of multiagent networked systems, such as construction of novel Lyapunov functions; ii) analysis of the strategic behavior of heterogeneous networked agents via novel game-theoretic techniques; and iii) development of efficient algorithms for computing equilibrium points and conducting convergence rate analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当前科学和工程中的许多挑战都与复杂网络有关,而多智能体网络系统目前是许多新应用的焦点。这些应用涉及在线社交网络的日益流行:大规模网络数据集的分析;政治、经济和生物系统中的代理人之间相互作用所产生的问题;以及我们日常生活中电力和无线网络的扩展。尽管多智能体网络系统的分析方法是传统的,但已有的结果在解决通信网络结构和智能体的行为/决策之间存在很强的相互依赖的现实情况方面存在不足。这项工作有望将控制、优化和博弈论等几种工程和数学工具结合在一起,对复杂动态网络上相互作用的代理的行为进行系统的分析。拟议的工作将提供关键技术,使大规模、安全和高效的多代理网络系统的部署和分析成为可能。即将开发的技术有望为多智能体网络系统中异质性的影响提供前所未有的理解,例如社交网络中的观点形成和机器人会合。将开展的研究将导致新的经济和工程设计政策,如有效的资源分配和最佳安全决策。这项研究的结果将促进几个领域的知识状况,包括分布式控制和优化、社会经济网络和网络安全。该项目将有助于提高我们了解动态网络中战略关系演变的能力,并通过保护网络免受恶意对手干预来确保网络-物理安全,从而有利于美国的长期国防利益。本项目将集中于具有状态依赖切换拓扑的多智能体网络决策系统的基于对偶的稳定性和收敛分析。一旦考虑到潜在的代理网络动力学的不对称或异质性,这些系统就变得更加复杂,这类问题在控制、社会科学和许多其他相关领域都带来了长期的挑战。这一变革性的研究将提供必要的数学基础,将现有关于多智能体系统的结果从静态的同质环境扩展到高度动态的异质环境。这些结果将被用来分析几个主要的应用,例如设计高效的资源分配算法和在高度动态的网络上开发安全策略。这项研究的具体目标包括i)多智能体网络系统的非常规分析,例如构造新的Lyapunov函数;ii)通过新的博弈论技术分析异类网络智能体的战略行为;以及iii)开发用于计算均衡点和进行收敛速度分析的高效算法。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

S Rasoul Etesami其他文献

S Rasoul Etesami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Categorical Duality and Semantics Across Mathematics, Informatics and Physics and their Applications to Categorical Machine Learning and Quantum Computing
数学、信息学和物理领域的分类对偶性和语义及其在分类机器学习和量子计算中的应用
  • 批准号:
    23K13008
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Closing in on the one-dimensional Efimov effect through boson-fermion duality
通过玻色子-费米子对偶性接近一维 Efimov 效应
  • 批准号:
    23K03267
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
IIA-Heterotic duality
IIA-杂种优势二元性
  • 批准号:
    22KJ0581
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Creating a new theory of computer algebra with duality spaces
创建具有对偶空间的计算机代数新理论
  • 批准号:
    23K03076
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the study of the duality relations of finite and symmetric multiple zeta values using symmetrization maps
利用对称图研究有限对称多zeta值的对偶关系
  • 批准号:
    23K12962
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
  • 批准号:
    2239362
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Conformal Field Theories with Higher Spin Symmetry and Duality Invariance
具有更高自旋对称性和对偶不变性的共形场论
  • 批准号:
    DP230101629
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
  • 批准号:
    EP/W036320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Kac-Moody quantum symmetric pairs, KLR algebras and generalized Schur-Weyl duality
Kac-Moody 量子对称对、KLR 代数和广义 Schur-Weyl 对偶性
  • 批准号:
    EP/W022834/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Fellowship
Two-photon fluorescence lifetime imaging microscopy utilizing the space-time duality
利用时空二象性的双光子荧光寿命成像显微镜
  • 批准号:
    10593761
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了