CAREER: Electrochemical Nanoimprinting of Inorganic Semiconductors: Towards Manufacturing of Three-dimensional Free-Form Optical Devices
职业:无机半导体的电化学纳米压印:迈向三维自由形状光学器件的制造
基本信息
- 批准号:1944750
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant investigates methods of scaling the production of three-dimensional structures in key electronic-grade inorganic semiconductors such as Silicon, Germanium and Gallium Arsenide. Patterning beyond two-dimensional structures is critical to enable the design of novel metamaterial-based infrared optical devices such as (i) high-speed optical interconnects in data centers and (ii) advanced imagining concepts for biosensing and night-vision applications. These design opportunities are hindered due to the inability of existing semiconductor manufacturing processes to fabricate three-dimensional hierarchical features with the required resolution, throughput, accuracy, uniformity and repeatability. In this project, an emerging format of nanoimprinting lithography, metal-assisted electrochemical nanoimprinting (Mac-Imprint) is studied through an integrated experimental and theoretical methodology. By understanding the fundamentals of chemical catalysis and mass transport in Mac-Imprint, it is sought to mass produce three-dimensional hierarchical features spanning four orders of magnitude (i.e. 10 nm – 100 µm) in scale at the physical limits of throughput to enable these applications. This represents the pursuit of high-risk and high-reward fundamental nanomanufacturing problems that otherwise are too costly and risky for industry while training and diversifying the future U.S. manufacturing workforce. Further, this project seeks to increase awareness of the role manufacturing engineers have in society for high-schoolers and undergraduates through integrated research and outreach activities.Despite a decade of efforts to extend nanoimprint lithography (NIL)’s library of patternable media beyond polymeric materials, nanoimprinting of inorganic single-crystalline semiconductors has been restricted due to recrystallization effects of heat-based NIL approaches, curtailing its optoelectronic properties. To resolve these challenges, this project investigates Mac-Imprint which exploits wet-chemistry and catalysis to selectively induce anisotropic etching at the interface of a semiconductor and a metal-coated stamp at room temperature. By exploring advanced stamp materials composed of mesoporous materials - traditionally used in water filtration and purification – it is sought to promote diffusion and enhance the process performance of Mac-Imprint (i.e. resolution, throughput, uniformity). At the fundamental level, the goal is to understand scaling of the effective diffusion constant of this new class of metal-coated tortuous mesoporous stamp materials with sub-50 nm pore sizes and correlated it to the Mac-Imprint’s process performance. As the reserched length scale of the stamp’s pores enters the range of the Debye length, it restricts diffusion and imposes a physical limit to throughput and resolution of Mac-Imprint. Thus, this project examines process-structure relationships of Mac-Imprint that depart from classical mass transport models and account for the complexity of the stamp’s geometry and its redox electrochemistry mechanism.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项教师早期职业发展(Career)资助研究了在关键的电子级无机半导体(如硅、锗和砷化镓)中扩大三维结构生产的方法。二维结构之外的图案对于设计新型基于超材料的红外光学设备至关重要,例如(i)数据中心的高速光学互连和(ii)用于生物传感和夜视应用的先进想象概念。由于现有半导体制造工艺无法制造具有所需分辨率,吞吐量,精度,均匀性和可重复性的三维分层特征,因此阻碍了这些设计机会。在本项目中,通过综合实验和理论方法研究了一种新兴的纳米压印技术,金属辅助电化学纳米压印(Mac-Imprint)。通过了解Mac-Imprint中化学催化和质量传输的基本原理,它寻求在吞吐量的物理极限下大规模生产跨越四个数量级(即10 nm - 100 μ m)的三维分层特征,以实现这些应用。这代表了对高风险和高回报的基本纳米制造问题的追求,否则对工业来说成本太高,风险太大,同时培训和多样化未来的美国制造业劳动力。此外,该项目旨在通过综合研究和外展活动,提高高中生和大学生对制造工程师在社会中的作用的认识。尽管十年来人们一直在努力将纳米压印技术(NIL)的图图化介质库扩展到聚合物材料之外,但无机单晶半导体的纳米压印技术由于热基NIL方法的再结晶效应而受到限制,从而限制了其光电性能。为了解决这些挑战,本项目研究了Mac-Imprint,它利用湿化学和催化在室温下选择性地诱导半导体和金属涂层印章界面的各向异性蚀刻。通过探索由介孔材料组成的先进印章材料-传统上用于水过滤和净化-寻求促进扩散和提高Mac-Imprint的工艺性能(即分辨率,吞吐量,均匀性)。在基本层面上,目标是了解这种新型金属涂层扭曲介孔冲压材料的有效扩散常数的缩放,其孔径小于50纳米,并将其与Mac-Imprint的工艺性能相关联。当所研究的印章孔隙长度尺度进入德拜长度范围时,它限制了扩散,对Mac-Imprint的吞吐量和分辨率施加了物理限制。因此,本项目研究了Mac-Imprint的过程结构关系,它偏离了经典的质量传输模型,并解释了印记几何形状及其氧化还原电化学机制的复杂性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Roughness Suppression in Electrochemical Nanoimprinting of Si for Applications in Silicon Photonics
硅电化学纳米压印中的粗糙度抑制在硅光子学中的应用
- DOI:10.1002/adma.202206608
- 发表时间:2022
- 期刊:
- 影响因子:29.4
- 作者:Sharstniou, Aliaksandr;Niauzorau, Stanislau;Hardison, Anna L.;Puckett, Matthew;Krueger, Neil;Ryckman, Judson D.;Azeredo, Bruno
- 通讯作者:Azeredo, Bruno
Metal-Assisted Electrochemical Nanoimprinting of Porous and Solid Silicon Wafers
多孔和实心硅片的金属辅助电化学纳米压印
- DOI:10.3791/61040-v
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sharstniou, Aliaksandr;Niauzorau, Stanislau;Junghare, Ashlesha;Azeredo, Bruno P.
- 通讯作者:Azeredo, Bruno P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruno Azeredo其他文献
Bruno Azeredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruno Azeredo', 18)}}的其他基金
FuSe-TG: STAMPEDE: Scalable Technology And Manufacturing of Photonics for Extreme information-Density
FuSe-TG:STAMPEDE:可扩展的光子学技术和制造,以实现极端信息密度
- 批准号:
2235443 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Low-Temperature Laser-Sinterable Nanostructured Feedstock to Improve the Speed of Metal 3D Printing, and to Enable Polymer-Metal Concomitant Printing
低温激光烧结纳米结构原料可提高金属 3D 打印速度,并实现聚合物-金属协同打印
- 批准号:
1932899 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Understanding and Improving Electrochemical Carbon Dioxide Capture
了解和改进电化学二氧化碳捕获
- 批准号:
MR/Y034244/1 - 财政年份:2025
- 资助金额:
$ 50万 - 项目类别:
Fellowship
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Electrochemical Profiling of Extracellular Vesicles (EP4EVs)
细胞外囊泡 (EP4EV) 的电化学分析
- 批准号:
EP/Y002458/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
METzero - Bringing the water sector towards Net-Zero using Microbial Electrochemical Technologies (METs)
METzero - 利用微生物电化学技术 (MET) 将水务行业带向净零
- 批准号:
EP/X040356/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CAREER: CAS: An Electrochemical Approach for Catalytic Dehydration
职业:CAS:催化脱水的电化学方法
- 批准号:
2339405 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
I-Corps: Two-step water splitting method using an electrochemical Zinc/Zinc Oxide cycle to produce hydrogen
I-Corps:使用电化学锌/氧化锌循环生产氢气的两步水分解方法
- 批准号:
2405325 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344723 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
In-situ & operando organic electrochemical transistors monitored by non-destructive spectroscopies for organic CMOS-like neuromorphic circuits (ICONIC)
原位
- 批准号:
10104091 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded
ELectrochemical OXidation of cYclic and biogenic substrates for high efficiency production of organic CHEMicals (ELOXYCHEM)
用于高效生产有机化学品的循环和生物底物的电化学氧化 (ELOXYCHEM)
- 批准号:
10110221 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
EU-Funded