Low-Temperature Laser-Sinterable Nanostructured Feedstock to Improve the Speed of Metal 3D Printing, and to Enable Polymer-Metal Concomitant Printing
低温激光烧结纳米结构原料可提高金属 3D 打印速度,并实现聚合物-金属协同打印
基本信息
- 批准号:1932899
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Metal additive manufacturing (AM) technologies rely on high-energy laser sintering of powder feedstock to fabricate high-strength, complex shaped, metal components for the aerospace, defense and medical industries. Laser enabled AM requires large amounts of energy to generate sufficiently high temperatures (500-1500 C) to sinter the feedstock, thus making it a notably slow process sometimes needing days to print 0.3 cubic meters of material. Recent studies on metal nanomaterials revealed they have unique properties that include reduced sintering temperatures (200-750 C), and enhanced heat generation resulting from laser light-matter interaction at the nano-scale. In this project, the laser interaction with a new class of AM-compatible nanostructured metal powder feedstock will be investigated. Attention will be given to tailoring the new feedstock so as to reduce the thermal energy and processing time requirements for sintering. If successful, this approach could eliminate the need for high-energy laser sources in additive metal processes, bringing capital and operational costs down, improving safety and expanding its industrial application. Further, realizing low-temperature sinterable metal feedstock is a step towards generating viable polymer-metal interfaces via additive processes; currently this is challenging as the polymer can undergo thermal degradation at current metal sintering temperatures (500 C). Metal-polymer co-processing would allow academics and the medical industry to print bio-inspired knee-implants mimicking not only human hard tissues (e.g. bone) but also soft ones (e.g. ligaments). In addition to the technical aspects, this project supports a summer graduate student traineeship, and a high-school competition in additive manufacturing; both activities aim to attract and train the next-generation of manufacturing engineers and scientists required for future US workforce needs.Nanoporous metal powders, e.g. with ligament size smaller than 50 nm, can be generated via dealloying methods. As their surface topography differs from solid particles generated via gas atomization they interact differently with incident laser beams. This project seeks to understand both the synthesis and laser sintering of nanoporous metal powder. Research focused on the synthesis of mesoporous metal powders will determine the physics and limitations of pore formation and control via chemical dealloying. The interaction of these novel particles with the laser source will be studied to elucidate how localized surface plasmon resonance within the ligaments of the pores can promote light-matter interaction during the sintering process, and how size-dependent melt-point suppression reduces the laser energy density and dwell requirements for processing. Research tasks include: 1) an investigation of the process-structure mapping of dealloying of metal alloys to quantify the role of adatom clustering in the pore formation theory, 2) experimental work to understand the scaling laws of mesoporous metal joining, 3) characterization of the stages of microstructural morphology evolution upon laser exposure such as pore coarsening, and 4) mechanical characterization of 3D printed specimens to elucidate the fundamental limit on the interfacial strength of low-temperature welded metal-metal and metal-polymer parts. If successful, this fundamental knowledge can be leveraged to improve the speed of metal AM and increase its combability with thermoplastics for simultaneous printing of polymers and metals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
金属增材制造(AM)技术依赖于粉末原料的高能激光烧结,为航空航天、国防和医疗行业制造高强度、复杂形状的金属部件。激光增材制造需要大量的能量来产生足够高的温度(500-1500 ℃)来烧结原料,因此使其成为一个非常缓慢的过程,有时需要几天才能打印0.3立方米的材料。最近对金属纳米材料的研究表明,它们具有独特的性能,包括降低烧结温度(200-750 ℃),以及在纳米尺度上激光与物质相互作用产生的热量。在这个项目中,将研究激光与一类新的AM兼容的纳米结构金属粉末原料的相互作用。将注意调整新的原料,以减少烧结所需的热能和加工时间。如果成功,这种方法可以消除添加剂金属工艺中对高能激光源的需求,降低资本和运营成本,提高安全性并扩大其工业应用。此外,实现低温可烧结金属原料是通过加成工艺产生可行的聚合物-金属界面的一步;目前这具有挑战性,因为聚合物在当前的金属烧结温度(500摄氏度)下可能会发生热降解。金属-聚合物共处理将允许学术界和医疗行业打印生物灵感的膝盖植入物,不仅模仿人类硬组织(例如骨骼),还模仿软组织(例如韧带)。除了技术方面,该项目还支持夏季研究生培训和增材制造高中竞赛;这两项活动旨在吸引和培训下一代制造工程师和科学家,以满足美国未来的劳动力需求。纳米多孔金属粉末,例如韧带尺寸小于50 nm,可以通过脱合金方法生成。由于它们的表面形貌不同于通过气体雾化产生的固体颗粒,它们与入射激光束的相互作用不同。该项目旨在了解纳米多孔金属粉末的合成和激光烧结。研究集中在合成介孔金属粉末将确定物理和孔的形成和控制通过化学脱合金的限制。将研究这些新型颗粒与激光源的相互作用,以阐明孔韧带内的局部表面等离子体共振如何在烧结过程中促进光-物质相互作用,以及尺寸依赖的熔点抑制如何降低激光能量密度和加工的驻留要求。研究任务包括:1)对金属合金的去合金化的工艺-结构映射的研究,以量化吸附原子簇在孔形成理论中的作用,2)理解中孔金属连接的标度律的实验工作,3)对激光暴露时的微观结构形态演变阶段(例如孔粗化)的表征,和4)3D打印试样的机械表征,以阐明低温焊接金属-金属和金属-聚合物部件的界面强度的基本限制。如果成功的话,这一基础知识可以被用来提高金属增材制造的速度,并增加其与热塑性塑料的可结合性,以同时打印聚合物和金属。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mixing of Spherical Solid and Nanoporous Copper Powders As Low-Reflectance Feedstock for Laser Powder Bed Fusion
球形固体和纳米多孔铜粉的混合作为激光粉末床熔融的低反射率原料
- DOI:10.1115/msec2023-105092
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kublik, Natalya;Niauzorau, Stanislau;Azeredo, Bruno
- 通讯作者:Azeredo, Bruno
Rapid 3D Printing of Nanoporous Copper Powders via Micro-Clip
通过微夹快速 3D 打印纳米孔铜粉
- DOI:10.1115/msec2023-104610
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Luyang;Kublik, Natalya;Azeredo, Bruno;Chen, Xiangfan
- 通讯作者:Chen, Xiangfan
Optical characterization and modeling of nanoporous gold absorbers fabricated by thin-film dealloying
- DOI:10.1088/1361-6528/ab9cf4
- 发表时间:2020-06
- 期刊:
- 影响因子:3.5
- 作者:R. Ramesh;S. Niauzorau;Q. Ni;B. Azeredo;Liping Wang
- 通讯作者:R. Ramesh;S. Niauzorau;Q. Ni;B. Azeredo;Liping Wang
Casting of high surface area electrodes enabled by low-temperature welding of copper nanoporous powders and nanoparticles hybrid feedstocks
- DOI:10.1016/j.apmt.2023.101802
- 发表时间:2023-06
- 期刊:
- 影响因子:8.3
- 作者:S. Niauzorau;N. Kublik;Emmanuel Dasinor;A. Hasib;Aliaksandr Sharstniou;B. Azeredo
- 通讯作者:S. Niauzorau;N. Kublik;Emmanuel Dasinor;A. Hasib;Aliaksandr Sharstniou;B. Azeredo
Imbibition and rheology of polymer-matrix nanoporous metal composites: Towards extrusion-based 3D printing
- DOI:10.1016/j.compositesb.2023.110913
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:A. Hasib;S. Niauzorau;N. Kublik;Sayli Jambhulkar;Yizhen Zhu;Dharneedar Ravichandran;Xiangjia Li;Kenan Song;B. Azeredo
- 通讯作者:A. Hasib;S. Niauzorau;N. Kublik;Sayli Jambhulkar;Yizhen Zhu;Dharneedar Ravichandran;Xiangjia Li;Kenan Song;B. Azeredo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruno Azeredo其他文献
Bruno Azeredo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruno Azeredo', 18)}}的其他基金
FuSe-TG: STAMPEDE: Scalable Technology And Manufacturing of Photonics for Extreme information-Density
FuSe-TG:STAMPEDE:可扩展的光子学技术和制造,以实现极端信息密度
- 批准号:
2235443 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Electrochemical Nanoimprinting of Inorganic Semiconductors: Towards Manufacturing of Three-dimensional Free-Form Optical Devices
职业:无机半导体的电化学纳米压印:迈向三维自由形状光学器件的制造
- 批准号:
1944750 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4: Low-temperature Laser Sintering and Melting of Semiconductors Through Selective Excitation of Soft Phonons
RII Track-4:通过软声子的选择性激发实现半导体的低温激光烧结和熔化
- 批准号:
2033424 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Continuous-Wave Laser Thomson Scattering Diagnostic for Low Temperature Plasmas
低温等离子体的连续波激光汤姆逊散射诊断
- 批准号:
2010466 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Low vibration and low temperature closed-cycle cryostat for oxide MBE and laser-ARPES
用于氧化物 MBE 和激光 ARPES 的低振动和低温闭环低温恒温器
- 批准号:
RTI-2020-00634 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Research Tools and Instruments
Development of the high performance alloys surface-treated at relatively low temperature due to femtosecond-laser-induced nanostructuring
由于飞秒激光诱导纳米结构而在相对较低的温度下进行表面处理的高性能合金的开发
- 批准号:
15K06472 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Low temperature oxidation of gallium nitride with super critical water by high-pressure underwater laser annealing
高压水下激光退火超临界水低温氧化氮化镓
- 批准号:
15K13955 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
GaAsBi laser diodes with low temperature dependence of lasing wavelength
激光波长温度依赖性较低的 GaAsBi 激光二极管
- 批准号:
24246008 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Low Temperature Formation of SingleCrystal Germanium Thin Film by Laser Annealing for Laminated Structure
叠层结构激光退火低温形成单晶锗薄膜
- 批准号:
23760284 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Si quasi-nucleation with a nanometer dimension by soft X-ray irradiation onto amorphous Si and dynamics of low-temperature crystallization by excimer laser irradiation following the soft X-ray irradiation
通过软 X 射线照射非晶硅实现纳米尺寸的 Si 准成核,以及软 X 射线照射后通过准分子激光照射进行低温结晶动力学
- 批准号:
19560667 - 财政年份:2007
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Low Temperature Fabrication of Diamond Films by CVD Method with Laser Induced Surface Reaction
激光诱导表面反应 CVD 法低温制备金刚石薄膜
- 批准号:
13450291 - 财政年份:2001
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of low-damage low-temperature surface modification technique using laser detonation-induced broad atom beams
利用激光爆轰诱导宽原子束开发低损伤低温表面改性技术
- 批准号:
12555200 - 财政年份:2000
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)