CAREER: Cavity-less optomechanics with macroscopic resonances
职业:具有宏观共振的无腔光力学
基本信息
- 批准号:1944728
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nontechnical Description: Cavity-optomechanics faces tremendous challenges of interrogating quantum mechanical oscillators of suspended structures using light at low temperature, caused by optical-absorption-driven mechanical heating and the associated quantum noise. On the other hand, implementation of dynamic modulation of light based on resonator arrays, which could lead to topological photonic states and unconventional light guiding, is facing the scaling issue of inhomogeneous resonators and modulators. Mechanical bound states in the continuum (BICs) in two-dimensional slab-on-substrate optomechanical crystals uniquely solve these challenges in the two distinct research areas. Thanks to the prohibited radiation of these mechanical BICs while being in contact with the substrate, unparalleled parametric optomechanical coupling might be achieved without introducing excess quantum noises. The large-scale resonance effect will also enhance traveling-wave acousto-optic modulations for a new paradigm of effective gauge field for photons in the continuum without using discrete resonators, leading to reconfigurable light guiding on chips and topological photonic states. The achievement of these demonstrations will enable a significant leap in programmable integrated photonic circuits, implementing quantum optomechanical protocols, and pushing the boundary between quantum and classical realms.Technical Description: The goal of this program is to demonstrate a new on-chip optomechanical architecture for macroscopic quantum optomechanics and Floquet light guiding by taking advantage of mechanical BICs. Fundamental physics involving quantum coherence and light-matter interactions at macroscopic scales are being explored, while theoretical concepts are translated to experimental demonstrations in integrated devices and systems. Trapping resonance phonons in large areas while enabling dissipation of optical-absorption-driven thermal phonons, this cavity-less optomechanical architecture might provide unprecedented cooperativity between phonons and photons, transcending the limitation of the prevailing architecture of optomechanical cavities in suspended structures. The primary focus of the project is on exploring macroscopic quantum optomechanical phenomena and time-modulated light guiding. In the first focus, radiation-pressure force will be used to cool the mechanical BICs for studying quantum phononic coherence beyond the microscopic scale, and in the second, mechanical BICs with finite Bloch momentum will be used for strong acousto-optic modulations of photonic band structure leading to Floquet light guiding. Experimental validations of these effects will be attained through the combination of physical modeling and device engineering. New regime of quantum optomechanics and Floquet photonics will be studied, aiming for fundamentally transcending the current limitations in manipulating single phonon states and dynamic modulation of light based on micro-resonators. The outcome of this program, including a new platform for optomechanics, could have a tremendous impact beyond this program including programmable optical computing, understanding quantum-to-classical transition, and enhancing quantum protocols for larger quantum networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:腔光学力学面临着巨大的挑战,询问量子力学振荡器的悬浮结构使用光在低温下,由光吸收驱动的机械加热和相关的量子噪声引起的。另一方面,基于谐振腔阵列的光动态调制技术,可能导致拓扑光子态和非常规的光波导,面临着非均匀谐振腔和调制器的缩放问题。二维板上基板光机械晶体中的连续介质中的机械束缚态(BIC)独特地解决了这两个不同研究领域中的挑战。由于这些机械BIC在与衬底接触时被禁止辐射,因此可以在不引入过量量子噪声的情况下实现无与伦比的参数光机械耦合。大尺度共振效应还将增强行波声光调制,从而在不使用离散共振器的情况下实现连续体中光子的有效规范场的新范例,从而实现芯片上的可重构光导和拓扑光子态。这些演示的实现将实现可编程集成光子电路的重大飞跃,实现量子光力学协议,推动量子和经典领域之间的边界。技术描述:该计划的目标是展示一种新的片上光机架构,用于宏观量子光力学和Floquet光导,利用机械BIC。涉及宏观尺度的量子相干性和光物质相互作用的基础物理学正在探索中,而理论概念则转化为集成设备和系统的实验演示。在大面积捕获共振声子,同时使光吸收驱动的热声子耗散,这种无腔光机械架构可能提供前所未有的声子和光子之间的协同性,超越了悬挂结构中的光机械腔的流行架构的限制。该项目的主要重点是探索宏观量子光学力学现象和时间调制光导。在第一个焦点中,辐射压力将用于冷却机械BIC以研究超越微观尺度的量子声子相干性,并且在第二个焦点中,具有有限Bloch动量的机械BIC将用于光子带结构的强声光调制,从而导致Floquet光导。这些效果的实验验证将通过物理建模和器件工程的结合来实现。将研究量子光力学和Floquet光子学的新领域,旨在从根本上超越目前在操纵单声子态和基于微谐振器的光的动态调制方面的局限性。该计划的成果,包括一个新的光力学平台,可能会产生巨大的影响,超越本计划,包括可编程光学计算,理解量子到经典的过渡,并加强量子协议的更大的量子网络。这个奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kejie Fang其他文献
Rapid carrier extraction and d-band center regulation of Pd-ZnInsub2/subSsub4/sub for efficient photocatalytic water splitting
用于高效光催化水分解的 Pd-ZnIn₂S₄ 的快速载流子提取和 d 带中心调控
- DOI:
10.1016/j.jallcom.2025.180652 - 发表时间:
2025-05-10 - 期刊:
- 影响因子:6.300
- 作者:
Liang Zhao;Tianrui Chang;Zhiyuan Hu;Kejie Fang;Xutao Zhang;Wanying Xiao;Feng Jiang;Lijing Wang;Daosheng Liu;Yongya Zhang - 通讯作者:
Yongya Zhang
InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation
用于宽带、超高效非线性转换和纠缠光子产生的磷化铟镓(InGaP)χ(2)集成光子学平台
- DOI:
10.1038/s41377-024-01653-5 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:23.400
- 作者:
Joshua Akin;Yunlei Zhao;Yuvraj Misra;A. K. M. Naziul Haque;Kejie Fang - 通讯作者:
Kejie Fang
Kejie Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kejie Fang', 18)}}的其他基金
ECCS/EPMD: Single-photon quantum information processing with nonlinear photonic integrated circuits
ECCS/EPMD:非线性光子集成电路的单光子量子信息处理
- 批准号:
2223192 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Cavity-Electro-Optomechanical Circuits with Broken Time-Reversal Symmetry
具有破缺时间反转对称性的腔机电光电路
- 批准号:
1809707 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
- 批准号:
24K17589 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EA/Ed: Acquisition of a carbon dioxide and methane Cavity Ringdown Spectrometer for education and research
EA/Ed:购买二氧化碳和甲烷腔衰荡光谱仪用于教育和研究
- 批准号:
2329285 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Spirit Use Case 2: Complex cavity ventilation/ compartment pressure relief digital twin
Spirit 用例 2:复杂腔体通风/隔间压力释放数字孪生
- 批准号:
10089679 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
CAREER: Cavity-Enforced Structure and Reactivity of High-Valent Iron Oxo, Nitrosyl, and Superoxo Complexes
职业:高价铁氧合、亚硝酰和超氧配合物的空腔强化结构和反应性
- 批准号:
2339280 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Cavity Ring Down Spectrometer (CRDS)
光腔衰荡光谱仪 (CRDS)
- 批准号:
516693059 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Major Research Instrumentation
SuperPlanckian Radiation via Cavity Guided Waves
通过腔导波的超普朗克辐射
- 批准号:
23H01352 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Highly efficient photocurrent and spin polarized current generation by cavity polariton
通过腔极化子产生高效光电流和自旋极化电流
- 批准号:
23H01942 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
- 批准号:
23H01987 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: Moire Cavity Single Emitter Lasers (MOCSELs)
EAGER:莫尔腔单发射激光器 (MOCSEL)
- 批准号:
2234513 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Open fiber-based cavity for spectroscopix experiments in semiconductor quantum optics
用于半导体量子光学光谱实验的开放式光纤腔
- 批准号:
517518181 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Major Research Instrumentation














{{item.name}}会员




