Cavity-Electro-Optomechanical Circuits with Broken Time-Reversal Symmetry
具有破缺时间反转对称性的腔机电光电路
基本信息
- 批准号:1809707
- 负责人:
- 金额:$ 36.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Light generally travels in two-way streets - a forward propagating light is accompanied by a backward propagating light if it undergoes reflection. To eliminate the backward propagating cousin requires time-reversal symmetry breaking of light. This is challenging because photons - the quanta of light- do not carry charge and thus do not interact with magnetic fields which are the force behind time-reversal symmetry breaking of charged particles, such as electrons. Reflection-free light propagation is important to optical information communications, in particular for stabilizing laser frequencies and mitigating signal decay. In a miniaturized setting, today's integrated photonic microchips use low-power and broadband optical elements to perform information processing and communication unavailable with conventional electronic counterparts. Just like an optical network, the proper functioning of the photonic microchips also benefits from reflection-eliminating devices. The chip-scale realization of these devices, so called optical isolators, remains an outstanding challenge. It is known that time-reversal symmetry of light can be broken by inducing time-modulation of media's refractive index. An effective means of such time-modulation can be achieved by exciting acoustic waves in the optical media which perturb local electric polarization density. In this context, this program will explore time-reversal symmetry breaking induced by the interaction between light and mechanical motion, and study non-reciprocal light propagation and associated new physics in artificial optomechanical structures realized on microchips. The potential broader impact of this work lies primarily in the development of new devices and methodologies for integrated photonic technologies, in the education of students in this important field through hands-on research and new courses, and in the improvement of societal benefits with new generations of optoelectronic products.The proposed program aims at developing an innovative family of integrated photonic circuits with broken time-reversal symmetry, enabled by radiation pressure force in coupled electro-optomechanical resonators. Cavity-optomechanical systems, involving the coupling of light intensity to mechanical motion via radiation pressure at wavelength scale, create the requisite large optical nonlinearities for explicitly time-reversal symmetry breaking. The use of phase-correlated parametric optical pumps for controlling individual cavities highlights the approach of programmable synthetic fields, which leads to optical and acoustic nonreciprocity, and may even reveal topological wave interference in large-scale optomechanical structures. Piezoelectric driving of steady state mechanical motion, for inducing photonic transition in multimode optomechanical cavities as another means to break time-reversal symmetry, can be used to boost the bandwidth of cavity-electro-optomechanical circuits beyond the mechanical damping rate. Most prominent of this work will be studying nonreciprocal photon-phonon interactions in electro-optomechanical circuits, and realizing important photonic device applications including non-magnetic circulators and robust delay lines. New physics bearing topological properties in optomechanical crystals driven by mechanical motion will also be investigated. The intellectual merit of this proposal lies primarily in the development of a new paradigm of nanophotonic network architecture that will unlock new lines of research, from optical NEMS to topological optomechanics, and enable transformative technologies for microwave photonics, communications, and quantum information.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
光通常在双向街道中传播-如果它经历反射,则向前传播的光伴随着向后传播的光。为了消除后向传播的表亲,需要光的时间反演对称破缺。这是具有挑战性的,因为光子-光的量子-不携带电荷,因此不与磁场相互作用,磁场是带电粒子(如电子)的时间反演对称性破缺背后的力。无反射光传播对于光信息通信是重要的,特别是对于稳定激光频率和减轻信号衰减。在小型化设置中,今天的集成光子微芯片使用低功率和宽带光学元件来执行传统电子对应物无法实现的信息处理和通信。就像光网络一样,光子微芯片的正常功能也受益于消除反射的设备。这些器件(所谓的光隔离器)的芯片级实现仍然是一个突出的挑战。众所周知,通过诱导介质折射率的时间调制,可以打破光的时间反演对称性。这种时间调制的有效手段可以通过在光学介质中激发声波来实现,该声波扰动局部电极化密度。在这种情况下,该计划将探索由光与机械运动之间的相互作用引起的时间反演对称性破缺,并研究在微芯片上实现的人工光机结构中的非互易光传播和相关的新物理。这项工作的潜在更广泛的影响主要在于为集成光子技术开发新的器件和方法,通过实践研究和新课程对学生进行这一重要领域的教育,以及通过新一代光电产品提高社会效益。拟议的计划旨在开发具有破时反转对称性的集成光子电路的创新系列,通过耦合电光机械谐振器中的辐射压力来实现。腔光学机械系统,涉及耦合的光强度的机械运动通过辐射压力在波长尺度上,创建明确的时间反演对称性破缺所需的大的光学非线性。使用相位相关参量光泵控制单个腔突出了可编程合成场的方法,这导致光学和声学的非互易性,甚至可能揭示大规模光机械结构中的拓扑波干涉。压电驱动稳态机械运动,在多模光机械腔中诱导光子跃迁,作为打破时间反演对称性的另一种手段,可以用来提高腔-电-光机械电路的带宽,使其超过机械阻尼率。这项工作最突出的将是研究电光机械电路中的非互易光子-声子相互作用,并实现重要的光子器件应用,包括非磁性循环器和鲁棒延迟线。本课程亦将探讨由机械运动所驱动的光机晶体中具有拓扑性质的新物理。该提案的智力价值主要在于开发纳米光子网络架构的新范式,这将开启从光学NEMS到拓扑光力学的新研究路线,并实现微波光子学,通信,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anomalous Quantum Hall Effect of Light in Bloch-Wave Modulated Photonic Crystals
- DOI:10.1103/physrevlett.122.233904
- 发表时间:2019-06-14
- 期刊:
- 影响因子:8.6
- 作者:Fang, Kejie;Wang, Yunkai
- 通讯作者:Wang, Yunkai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kejie Fang其他文献
Rapid carrier extraction and d-band center regulation of Pd-ZnInsub2/subSsub4/sub for efficient photocatalytic water splitting
用于高效光催化水分解的 Pd-ZnIn₂S₄ 的快速载流子提取和 d 带中心调控
- DOI:
10.1016/j.jallcom.2025.180652 - 发表时间:
2025-05-10 - 期刊:
- 影响因子:6.300
- 作者:
Liang Zhao;Tianrui Chang;Zhiyuan Hu;Kejie Fang;Xutao Zhang;Wanying Xiao;Feng Jiang;Lijing Wang;Daosheng Liu;Yongya Zhang - 通讯作者:
Yongya Zhang
InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation
用于宽带、超高效非线性转换和纠缠光子产生的磷化铟镓(InGaP)χ(2)集成光子学平台
- DOI:
10.1038/s41377-024-01653-5 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:23.400
- 作者:
Joshua Akin;Yunlei Zhao;Yuvraj Misra;A. K. M. Naziul Haque;Kejie Fang - 通讯作者:
Kejie Fang
Kejie Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kejie Fang', 18)}}的其他基金
ECCS/EPMD: Single-photon quantum information processing with nonlinear photonic integrated circuits
ECCS/EPMD:非线性光子集成电路的单光子量子信息处理
- 批准号:
2223192 - 财政年份:2022
- 资助金额:
$ 36.01万 - 项目类别:
Standard Grant
CAREER: Cavity-less optomechanics with macroscopic resonances
职业:具有宏观共振的无腔光力学
- 批准号:
1944728 - 财政年份:2020
- 资助金额:
$ 36.01万 - 项目类别:
Continuing Grant
相似国自然基金
蒽醌/石墨烯纳米复合材料电极的电催化氧还原性能及其在异相electro-Fenton-like体系中的应用研究
- 批准号:21177017
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Electro-fermentation process design for efficient CO2 conversion into value-added products
电发酵工艺设计可有效地将二氧化碳转化为增值产品
- 批准号:
EP/Y002482/1 - 财政年份:2024
- 资助金额:
$ 36.01万 - 项目类别:
Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
- 批准号:
EP/Y036948/1 - 财政年份:2024
- 资助金额:
$ 36.01万 - 项目类别:
Research Grant
Sus-Flow: Accelerating Sustainable Continuous Medicine Manufacture via Photo-, Electro-and Thermo-chemistry with Next-Generation Reactors
Sus-Flow:利用下一代反应器通过光化学、电化学和热化学加速可持续连续药物制造
- 批准号:
EP/Z53299X/1 - 财政年份:2024
- 资助金额:
$ 36.01万 - 项目类别:
Research Grant
Molecule-based Magneto/electro/mechano-Calorics
基于分子的磁/电/机械热学
- 批准号:
EP/Y036565/1 - 财政年份:2024
- 资助金额:
$ 36.01万 - 项目类别:
Research Grant
CAREER: Electro-Shock Synthesis of High Entropy Alloy Nanoparticles from Sub-Femtoliter Reactors
职业:亚飞升反应器电冲击合成高熵合金纳米粒子
- 批准号:
2327563 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Continuing Grant
CAREER: Distributed, Wirelessly Powered, Implantable, Opto-Electro Neural Interface
职业:分布式、无线供电、可植入、光电神经接口
- 批准号:
2239915 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Continuing Grant
CDS&E: Coupled Electro-Thermal Transport in Two-Dimensional Materials and Heterostructures
CDS
- 批准号:
2302879 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Standard Grant
FuSe-TG: Electro-Thermal Co-Design Center for Ultra-Wide Bandgap Semiconductor Devices
FuSe-TG:超宽带隙半导体器件电热协同设计中心
- 批准号:
2234479 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Standard Grant
An experimental study of multi-ion effects on collisionless shock using electro-magnetically driven plasma flow
使用电磁驱动等离子体流的多离子效应对无碰撞冲击的实验研究
- 批准号:
23K13079 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Greater Manchester Electro-chemical Hydrogen Cluster
大曼彻斯特电化学氢集群
- 批准号:
10055151 - 财政年份:2023
- 资助金额:
$ 36.01万 - 项目类别:
Collaborative R&D