ECCS/EPMD: Single-photon quantum information processing with nonlinear photonic integrated circuits
ECCS/EPMD:非线性光子集成电路的单光子量子信息处理
基本信息
- 批准号:2223192
- 负责人:
- 金额:$ 39.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Creation and control of quantum correlations and entanglement between photons is critical to quantum information processing and particularly for quantum network protocols, including two-photon quantum logic and efficient entanglement swapping, which requires photon-photon interaction. Strong photon-photon interaction is typically achieved via highly nonlinear systems, such as cavity-quantum electrodynamics (QED) systems consisting of atoms coupled with high-Q optical cavities, or by measurement-based, post-selection methods. Despite successful demonstrations, these approaches involving complicated setups and/or stringent experimental conditions are arguably difficult for more complex and upscaled quantum information tasks. It is thus highly desirable to realize photon-photon interaction based on bulk optical nonlinearities without resorting to quantum emitters. However, because of the weak bulk optical nonlinearity, quantum photonic systems, including both bulk crystals and integrated photonic circuits, are almost exclusively operated in the parametric regime for applications such as heralded single-photon sources and continuous-variable quantum information tasks (except for measurement-based protocols which are typically probabilistic). It remains an outstanding challenge to realize single-photon nonlinearity with bulk materials and substantial photon-photon correlations that are useful for quantum information applications. In this program, we will tackle this fundamental challenge using an approach combining a state-of-the-art integrated quantum photonic platform and innovative quantum optical methods that will lead to critical quantum optical protocols, including quantum non-demolition measurement of photons—a capability that could revolutionize all of optical quantum information processing. We will realize few-photon quantum coherence all-optically, capitalizing on our recently developed integrated quantum photonic platform with a record-high optical nonlinearity. Our approach, based on quantum interference via waveguide-coupled nonlinear optical cavities, will enable generation and manipulation of few-photon quantum correlations in the integrated photonic system by controlling its linear response. This will allow us to demonstrate several critical quantum optical protocols including quantum non-demolition measurement of photons and synchronous entanglement swapping with high fidelity. The outcome of this program will have broader impacts in harnessing quantum coherence, enhancing photonic quantum information processing, and paving the way towards repeater-enabled quantum networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建立和控制光子之间的量子关联和纠缠对于量子信息处理,特别是对量子网络协议来说是至关重要的,包括双光子量子逻辑和高效的纠缠交换,这需要光子-光子相互作用。强光子-光子相互作用通常是通过高度非线性的系统来实现的,例如由原子与高Q光学腔耦合而成的腔-量子电动力学(QED)系统,或者通过基于测量的后选择方法。尽管演示取得了成功,但这些方法涉及复杂的设置和/或严格的实验条件,对于更复杂和更大规模的量子信息任务来说,可以说是困难的。因此,人们非常希望在不依赖量子发射体的情况下,实现基于体光学非线性的光子-光子相互作用。然而,由于弱的体光学非线性,量子光子系统,包括体晶体和集成光子电路,几乎都是在参数范围内工作的,例如预告单光子源和连续变量的量子信息任务(除了通常是概率的基于测量的协议)。在量子信息应用中,如何实现块状材料的单光子非线性和光子-光子关联仍然是一个突出的挑战。在这个项目中,我们将使用一种结合了最先进的集成量子光子平台和创新的量子光学方法的方法来解决这一根本挑战,这些方法将导致关键的量子光学协议,包括量子非破坏性测量光子-一种可能彻底改变所有光学量子信息处理的能力。我们将利用我们最近开发的具有创纪录的光学非线性的集成量子光子平台,实现全光学的少光子量子相干。我们的方法基于通过波导耦合的非线性光腔的量子干涉,可以通过控制集成光子系统的线性响应来产生和操纵少光子量子关联。这将使我们能够展示几个关键的量子光学协议,包括高保真的量子非破坏测量和同步纠缠交换。该计划的成果将在利用量子相干、增强光子量子信息处理以及为中继器支持的量子网络铺平道路方面产生更广泛的影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kejie Fang其他文献
Rapid carrier extraction and d-band center regulation of Pd-ZnInsub2/subSsub4/sub for efficient photocatalytic water splitting
用于高效光催化水分解的 Pd-ZnIn₂S₄ 的快速载流子提取和 d 带中心调控
- DOI:
10.1016/j.jallcom.2025.180652 - 发表时间:
2025-05-10 - 期刊:
- 影响因子:6.300
- 作者:
Liang Zhao;Tianrui Chang;Zhiyuan Hu;Kejie Fang;Xutao Zhang;Wanying Xiao;Feng Jiang;Lijing Wang;Daosheng Liu;Yongya Zhang - 通讯作者:
Yongya Zhang
InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation
用于宽带、超高效非线性转换和纠缠光子产生的磷化铟镓(InGaP)χ(2)集成光子学平台
- DOI:
10.1038/s41377-024-01653-5 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:23.400
- 作者:
Joshua Akin;Yunlei Zhao;Yuvraj Misra;A. K. M. Naziul Haque;Kejie Fang - 通讯作者:
Kejie Fang
Kejie Fang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kejie Fang', 18)}}的其他基金
CAREER: Cavity-less optomechanics with macroscopic resonances
职业:具有宏观共振的无腔光力学
- 批准号:
1944728 - 财政年份:2020
- 资助金额:
$ 39.91万 - 项目类别:
Continuing Grant
Cavity-Electro-Optomechanical Circuits with Broken Time-Reversal Symmetry
具有破缺时间反转对称性的腔机电光电路
- 批准号:
1809707 - 财政年份:2018
- 资助金额:
$ 39.91万 - 项目类别:
Standard Grant