CAREER: Real-time In-situ Characterization of Evolving Rock Systems for Smart-controlled Subsurface Engineering
职业:智能控制地下工程演化岩石系统的实时现场表征
基本信息
- 批准号:1944812
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant will establish an integrated research and education program aimed at the next generation of physics-based data analytics to enable holistic (multiscale and multiphysics) characterization of the subsurface in real time. Coupled physics processes driven by engineered stimulation of the subsurface underlie many emerging technologies germane to advanced geo-infrastructures; examples include sustainable energy mining from enhanced geothermal systems and intelligent mitigation of the affiliated environmental impacts. Optimal design and closed-loop control of such operations require real-time feedback on the nature of progressive variations in the target subterranean regions. 3D in-situ tracking of multiphysics processes in such environments is, however, exceptionally challenging; engineered treatments (such as fluid or gas injection) are often induced in a complex domain whose structure and material properties are unknown (or uncertain) across multiple scales. Nevertheless, existing approaches to in-situ monitoring mostly rely on simplistic characterization of the subsurface, and mainly ignore the multiscale and coupled-physics nature of the induced processes in data inversion. Moreover, these tools are by and large computationally expensive and inapplicable for real-time sensing, or only amenable to ad hoc sensory configurations. Therefore, there exists a critical need for fast (yet robust) holistic data processing tools that transcend some of these limitations. In light of the fast-paced developments in sensing instruments, furnishing high-resolution spatiotemporal measurements and big data sets, such advances in data analytics is paramount for engineered systems of the future.The research component of this project aims to establish a comprehensive (analytical, computational, and experimental) platform for: (1) real-time geometric reconstruction of advancing interfaces and volumetric process zones in multiphasic subterranean domains of a-priori unknown properties, (2) high-fidelity hydro-mechanical characterization of thus-recovered regions, and (3) verification and validation of these developments in a laboratory setting for better understanding of injection-induced multiphasic variations in randomly fractured rock masses pertinent to enhanced geothermal systems. This will be accomplished by taking advantage of the most recent advances in applied mathematics, geophysics, biomedical engineering, and sensor technology. In particular, the inverse solution is built upon three fundamental lynchpins: (i) inverse scattering and the theory of transmission eigenvalues, (ii) Marchenko integral equations and the generalized autofocusing concept, and (iii) non-iterative solutions to full-field inversion. The education component of this project aims at: (1) integration of the interdisciplinary knowledge underpinning state-of-the-art data processing tools for complex environments into the curriculum of science and engineering students at CU-Boulder and outreach activities, and (2) cultivating an effective knowledge transfer from research to academia and practice that includes all the stakeholders. In this vein, a three-tier educational program will be developed, involving: (i) engineering outreach to K-12 students with emphasis on underrepresented minorities, (ii) introducing WISE: wave-based inversion in subterranean environments as a new thrust in the engineering program at CU Boulder, and (iii) multilateral collaborations among scientists, engineers, and practitioners at regional, national and international levels.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔学院早期职业发展(Career)赠款将建立一个综合研究和教育计划,旨在实现基于物理的下一代数据分析,以实现对地下表面的全面(多尺度和多物理)实时表征。地下工程刺激所驱动的耦合物理过程是与先进的地质基础设施密切相关的许多新兴技术的基础;例如,从强化的地热系统中进行可持续能源开采以及智能地减轻相关的环境影响。此类作业的优化设计和闭环控制需要对目标地下区域的渐进变化的性质进行实时反馈。然而,在这样的环境中对多物理过程进行3D原位跟踪是非常具有挑战性的;工程处理(如流体或气体注入)通常是在一个复杂的领域中进行的,其结构和材料特性在多个尺度上是未知的(或不确定的)。然而,现有的现场监测方法大多依赖于对地下的简单化描述,主要忽略了数据反演中诱发过程的多尺度和耦合物理性质。此外,总的来说,这些工具的计算成本很高,不适用于实时检测,或者仅适用于特殊的感官配置。因此,迫切需要快速(但健壮)的整体数据处理工具,以超越其中一些限制。鉴于传感仪器、提供高分辨率时空测量和大数据集的快速发展,这种数据分析方面的进展对于未来的工程系统至关重要。该项目的研究部分旨在建立一个综合的(分析、计算和实验)平台:(1)先验未知性质的多相地下区域中推进界面和体积过程区域的实时几何重建,(2)由此恢复的区域的高保真流体力学表征,以及(3)在实验室环境中验证和确认这些发展,以便更好地了解与增强型地热系统相关的随机裂隙岩体中注入引起的多相变化。这将通过利用应用数学、地球物理、生物医学工程和传感器技术的最新进展来实现。特别地,逆解建立在三个基本的基础上:(I)逆散射和传输本征值理论,(Ii)Marchenko积分方程和广义自聚焦概念,以及(Iii)全场反演的非迭代解。该项目的教育部分旨在:(1)将支持最先进的复杂环境数据处理工具的跨学科知识融入博尔德大学理工科学生的课程和外联活动,(2)培养从研究到学术和实践的有效知识转移,包括所有利益攸关方。在这一背景下,将制定一个三级教育计划,涉及:(I)面向K-12学生的工程推广,重点是未被充分代表的少数族裔;(Ii)引入WISE:在地下环境中基于波的反演作为CU Boulder工程计划的新重点;以及(Iii)在地区、国家和国际层面的科学家、工程师和从业人员之间的多边合作。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrasonic imaging in highly heterogeneous backgrounds
- DOI:10.1098/rspa.2022.0721
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Fatemeh Pourahmadian;H. Haddar
- 通讯作者:Fatemeh Pourahmadian;H. Haddar
Poroelastic near-field inverse scattering
多孔弹性近场逆散射
- DOI:10.1016/j.jcp.2022.111005
- 发表时间:2022
- 期刊:
- 影响因子:4.1
- 作者:Pourahmadian, Fatemeh;Napal, Kevish
- 通讯作者:Napal, Kevish
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fatemeh Pourahmadian其他文献
A fast Fourier transform-based solver for elastic micropolar composites
基于快速傅里叶变换的弹性微极性复合材料求解器
- DOI:
10.1016/j.cma.2023.116510 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:7.300
- 作者:
Noah M. Francis;Fatemeh Pourahmadian;Ricardo A. Lebensohn;Rémi Dingreville - 通讯作者:
Rémi Dingreville
On the elastic-wave imaging and characterization of fractures with specific stiffness
比刚度裂缝的弹性波成像与表征
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Fatemeh Pourahmadian;B. Guzina - 通讯作者:
B. Guzina
Network scaling and scale-driven loss balancing for intelligent characterization of poroelastic systems
孔隙弹性系统智能表征的网络缩放和尺度驱动的损耗平衡
- DOI:
10.1016/j.jcp.2025.114129 - 发表时间:
2025-09-15 - 期刊:
- 影响因子:3.800
- 作者:
Yang Xu;Fatemeh Pourahmadian - 通讯作者:
Fatemeh Pourahmadian
Laser ultrasonic imaging of subsurface defects with the linear sampling method.
使用线性采样方法对表面下缺陷进行激光超声成像。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.8
- 作者:
V. Narumanchi;Fatemeh Pourahmadian;J. Lum;A. Townsend;J. Tringe;D. Stobbe;T. Murray - 通讯作者:
T. Murray
Differential tomography of micromechanical evolution in elastic materials of unknown micro/macrostructure
未知微观/宏观结构弹性材料中微机械演化的微分断层扫描
- DOI:
10.1137/19m1305707 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Fatemeh Pourahmadian;H. Haddar - 通讯作者:
H. Haddar
Fatemeh Pourahmadian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Immuno-Real Time PCR法精确定量血清MG7抗原及在早期胃癌预警中的价值
- 批准号:30600737
- 批准年份:2006
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
无色ReAl3(BO3)4(Re=Y,Lu)系列晶体紫外倍频性能与器件研究
- 批准号:60608018
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Personalized, wearable robot mobility assistance considering human-robot co-adaptation that incorporates biofeedback, user coaching, and real-time optimization
职业:个性化、可穿戴机器人移动辅助,考虑人机协同适应,结合生物反馈、用户指导和实时优化
- 批准号:
2340519 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
- 批准号:
2340799 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Real-time control of elementary catalytic steps: Controlling total vs partial electrocatalytic oxidation of alkanes and olefins
职业:实时控制基本催化步骤:控制烷烃和烯烃的全部与部分电催化氧化
- 批准号:
2338627 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Frequency Agile Real-Time Reconfigurable RF Analog Co-Processor Design Leveraging Engineered Nanoparticle and 3D Printing
职业:利用工程纳米颗粒和 3D 打印进行频率捷变实时可重构射频模拟协处理器设计
- 批准号:
2340268 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Foundations of Scalable and Resilient Distributed Real-Time Decision Making in Open Multi-Agent Systems
职业:开放多代理系统中可扩展和弹性分布式实时决策的基础
- 批准号:
2339509 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Semantic and Goal-oriented Status Updating for Real-time Inference, Monitoring, and Decision-Making
职业:语义和目标导向的状态更新,用于实时推理、监控和决策
- 批准号:
2239677 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Open-Access, Real-Time High-Throughput Metabolomics for High-Field and Benchtop NMR for Biological Inquiry
职业:用于生物研究的高场和台式 NMR 的开放获取、实时高通量代谢组学
- 批准号:
2237314 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant














{{item.name}}会员




