FW-HTF-RM: Enhancing Future Work of Nursing Professionals through Collaborative Human-Robot Interfaces

FW-HTF-RM:通过协作式人机界面增强护理专业人员的未来工作

基本信息

  • 批准号:
    2026584
  • 负责人:
  • 金额:
    $ 149.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

This Future of Work at the Human-Technology Frontier (FW-HTF) research project advances a vision for the profession of nursing where collaborative human-robot interfaces (CHRIs) can enhance nurse productivity and reduce on-the-job stress. Interfaces in this project are broadly defined as any link between humans and intelligent machines such as robots, using advanced sensors, mobile computing, and display devices. In this project, interfaces will intelligently “adapt” to provide both physical and cognitive assistance to nurses and patients in future healthcare environments. The project will pursue four objectives. The team will develop a taxonomy of nursing tasks to determine those that can be justifiably delegated to intelligent robots. The team will then compare the ability of two novel CHRIs to facilitate stable and effective shared human-robot control of a robot-assisted walking task (i.e., fall prevention). They will also investigate a CHRI recommender system that coordinates patient sitting tasks such as vital signs monitor and item fetching among several nurses and mobile manipulators. The goal here is to determine the optimal number of robotic assistants per group of patients and nurses. Finally, the team will evaluate the social and economic impact of the technology on nurses, patients, and healthcare facilities. The project will promote the progress of science and advance the national health by providing a blueprint for engineering future nursing assistant robots, for informing healthcare facility design to accommodate the robots, and for advancing instruction on the use of intelligent robotic assistants into formal nursing education, nurse training, and credentialing. Other potential benefits of the project include the development of instructional programs in robotics and machine learning at the University of Louisville, involvement of undergraduate nursing students in this research, and outreach to rural primary care clinics and hospital settings through the Center for Health Systems Innovation at the Oklahoma State University.This project includes four objectives: Behavioral observation, documentation reviews, task inventories and critical incidents will be analyzed to develop a task, skill, and context taxonomy to identify nursing tasks that can be assigned to intelligent robotic nurse assistants; The team will develop two CHRIs and then compare their performance in an assisted walking task with the abilities of human nursing staff. These interfaces utilize neural networks and generic algorithms and adjust to psycho-physiological and tactile signals from users and are designed to allow novice nurses and patients to operate robots with wearable sensors for prevention of falls. The team will then enhance the informational capabilities of the physical CHRIs using collaborative filtering, hybrid recommendation and machine learning techniques. The goal here is to develop an intelligent recommender system that will promote efficiency in the deployment of robotic assistants capable of performing patient sitting tasks such as vital signs monitoring and item fetching. The interfaces in this project will be evaluated by approximately 150 expert and novice users, nursing students and simulated patients to advance understanding of which types of tasks are better assigned to people and which may be delegated to robots in nursing scenarios. Finally, the team will perform economic analyses of the impact of the technology on nursing costs and the skilling needs for future healthcare industry through O*NET databases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“人类技术前沿工作的未来”(FW-HTF)研究项目为护理专业提出了一个愿景,即协作人机界面(CHRIs)可以提高护士的工作效率并减少工作压力。这个项目中的接口被广泛定义为人类和智能机器(如机器人)之间的任何连接,使用先进的传感器、移动计算和显示设备。在这个项目中,接口将智能地“适应”,在未来的医疗环境中为护士和患者提供身体和认知方面的帮助。该项目将追求四个目标。该团队将制定护理任务的分类,以确定哪些任务可以合理地委托给智能机器人。然后,该团队将比较两个新型CHRIs的能力,以促进稳定和有效的人机共享控制机器人辅助行走任务(即防止跌倒)。他们还将研究一个CHRI推荐系统,该系统可以协调患者坐着的任务,如几个护士和移动操作器之间的生命体征监测和物品提取。这里的目标是确定每组病人和护士的机器人助手的最佳数量。最后,该团队将评估该技术对护士、患者和医疗机构的社会和经济影响。该项目将为未来护理助理机器人的工程设计提供蓝图,为适应机器人的医疗设施设计提供信息,并将智能机器人助理的使用指导推进到正规护理教育、护士培训和资格认证中,从而促进科学进步,促进国民健康。该项目的其他潜在好处包括路易斯维尔大学机器人和机器学习教学计划的发展,本科护理专业学生参与这项研究,并通过俄克拉荷马州立大学卫生系统创新中心向农村初级保健诊所和医院机构推广。该项目包括四个目标:行为观察、文档审查、任务清单和关键事件分析,以开发任务、技能和上下文分类,以确定可以分配给智能机器人护士助理的护理任务;该团队将开发两个CHRIs,然后将它们在辅助行走任务中的表现与人类护理人员的能力进行比较。这些接口利用神经网络和通用算法,并根据用户的心理生理和触觉信号进行调整,旨在让新手护士和患者操作带有可穿戴传感器的机器人,以防止跌倒。然后,该团队将使用协同过滤、混合推荐和机器学习技术来增强物理CHRIs的信息能力。这里的目标是开发一个智能推荐系统,该系统将提高部署机器人助手的效率,这些机器人助手能够执行患者坐诊任务,如生命体征监测和物品提取。该项目的界面将由大约150名专家和新手用户、护理学生和模拟患者进行评估,以进一步了解在护理场景中哪些任务最好分配给人类,哪些任务可以委托给机器人。最后,该团队将通过O*NET数据库对该技术对护理成本和未来医疗保健行业技能需求的影响进行经济分析。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lean Health Care Internships: A Novel Systems-Based Practice Education Program for Undergraduate Medical Students
精益医疗保健实习:针对本科医学生的基于系统的新型实践教育计划
  • DOI:
    10.1097/acm.0000000000005312
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Erdmann, Marjorie A.;Paramel, Ipe S.;Marshall, Carolyn M.
  • 通讯作者:
    Marshall, Carolyn M.
Technology Use During COVID-19 Pandemic: Future Implications for Nursing and Health Care
COVID-19 大流行期间的技术使用:对护理和医疗保健的未来影响
  • DOI:
    10.1097/cin.0000000000000906
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Logsdon, M. Cynthia
  • 通讯作者:
    Logsdon, M. Cynthia
Clustering temporal disease networks to assist clinical decision support systems in visual analytics of comorbidity progression
  • DOI:
    10.1016/j.dss.2021.113583
  • 发表时间:
    2021-07-07
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Lu, Yajun;Chen, Suhao;Gin, Andrew
  • 通讯作者:
    Gin, Andrew
Evolution and impact of bias in human and machine learning algorithm interaction
  • DOI:
    10.1371/journal.pone.0235502
  • 发表时间:
    2020-08-13
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Sun, Wenlong;Nasraoui, Olfa;Shafto, Patrick
  • 通讯作者:
    Shafto, Patrick
Debiasing the Cloze Task in Sequential Recommendation with Bidirectional Transformers
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dan Popa其他文献

RETRACTED ARTICLE: Deep learning model for home automation and energy reduction in a smart home environment platform
  • DOI:
    10.1007/s00521-018-3724-6
  • 发表时间:
    2018-09-20
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Dan Popa;Florin Pop;Cristina Serbanescu;Aniello Castiglione
  • 通讯作者:
    Aniello Castiglione
Human-robot collaborative assembly and welding: A review and analysis of the state of the art
人机协作装配与焊接:现状的综述与分析
  • DOI:
    10.1016/j.jmapro.2024.09.044
  • 发表时间:
    2024-12-12
  • 期刊:
  • 影响因子:
    6.800
  • 作者:
    Yue Cao;Quan Zhou;Wei Yuan;Qiang Ye;Dan Popa;YuMing Zhang
  • 通讯作者:
    YuMing Zhang
Retraction Note: Deep learning model for home automation and energy reduction in a smart home environment platform
  • DOI:
    10.1007/s00521-024-10345-5
  • 发表时间:
    2024-08-13
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Dan Popa;Florin Pop;Cristina Serbanescu;Aniello Castiglione
  • 通讯作者:
    Aniello Castiglione

Dan Popa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dan Popa', 18)}}的其他基金

I-Corps: Adaptive Robotic Nursing Assistants for Physical Healthcare Delivery
I-Corps:用于身体保健服务的自适应机器人护理助理
  • 批准号:
    2016973
  • 财政年份:
    2020
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
SCH: INT: Adaptive Partnership for the Robotic Treatment of Autism
SCH:INT:自闭症机器人治疗的适应性合作伙伴关系
  • 批准号:
    1838808
  • 财政年份:
    2019
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
MRI: Development of a Multiscale Additive Manufacturing Instrument with Integrated 3D Printing and Robotic Assembly
MRI:开发具有集成 3D 打印和机器人装配功能的多尺度增材制造仪器
  • 批准号:
    1828355
  • 财政年份:
    2018
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
NRI: FND: Light-Powered Microrobots for Future MIcrofactories
NRI:FND:未来微型工厂的光动力微型机器人
  • 批准号:
    1734383
  • 财政年份:
    2017
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
I-Corps: Multi-modal Robot Skins for Adaptive Human-Machine Interfaces
I-Corps:用于自适应人机界面的多模式机器人皮肤
  • 批准号:
    1713741
  • 财政年份:
    2017
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
Doctoral Consortium at the 2016 IEEE Conference on Automation Science and Engineering (CASE 2016)
2016年IEEE自动化科学与工程会议博士联盟(CASE 2016)
  • 批准号:
    1645670
  • 财政年份:
    2016
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
PFI:BIC - Adaptive Robotic Nursing Assistants for Physical Tasks in Hospital Environments
PFI:BIC - 在医院环境中执行体力任务的自适应机器人护理助理
  • 批准号:
    1643989
  • 财政年份:
    2016
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Design Tools for Nanofactories with Robust Millimetric Assemblers
EAGER:网络制造:具有强大毫米级组装机的纳米工厂设计工具
  • 批准号:
    1633119
  • 财政年份:
    2016
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
PFI:BIC - Adaptive Robotic Nursing Assistants for Physical Tasks in Hospital Environments
PFI:BIC - 在医院环境中执行体力任务的自适应机器人护理助理
  • 批准号:
    1534124
  • 财政年份:
    2015
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
EAGER: Cybermanufacturing: Design Tools for Nanofactories with Robust Millimetric Assemblers
EAGER:网络制造:具有强大毫米级组装机的纳米工厂设计工具
  • 批准号:
    1547197
  • 财政年份:
    2015
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant

相似国自然基金

转HTFα对脊髓继发性损伤和微循环重建的影响
  • 批准号:
    39970755
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326160
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
  • 批准号:
    2326159
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
  • 批准号:
    2326391
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Addressing and Amplifying the Skills of the Future Hispanic and Latino Construction Workforce Using BIM and Augmented Reality
FW-HTF-RM:使用 BIM 和增强现实解决和增强未来西班牙裔和拉丁裔建筑劳动力的技能
  • 批准号:
    2326134
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326173
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
Collaborative Research [FW-HTF-RM]: The Future of Nurse Training: Robotic Teaching Assistant Systems for Nursing Instructors
协作研究 [FW-HTF-RM]:护士培训的未来:护理讲师的机器人助教系统
  • 批准号:
    2326390
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Bridging AI Inequality in Digitally-Mediated Gig Work
FW-HTF-RM:弥合数字化零工工作中的人工智能不平等
  • 批准号:
    2326378
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Collaborative Research: Assistive Intelligence for Cooperative Robot and Inspector Survey of Infrastructure Systems (AI-CRISIS)
FW-HTF-RM:协作研究:协作机器人辅助智能和基础设施系统检查员调查 (AI-CRISIS)
  • 批准号:
    2337277
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-RM: AI-Assisted Programming: Equipping Social and Natural Scientists for the Future of Research
合作研究:FW-HTF-RM:人工智能辅助编程:为社会和自然科学家的未来研究做好准备
  • 批准号:
    2326174
  • 财政年份:
    2023
  • 资助金额:
    $ 149.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了