CAREER: Hyperbolicity Properties of Hypersurfaces
职业:超曲面的双曲性质
基本信息
- 批准号:1945144
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
High-degree curves in the plane have been shown to have many special properties as compared to lines in the plane. For instance, high degree curves have only finitely many rational points, while lines have infinitely many. These properties of high degree curves are loosely referred to as hyperbolicity properties. A huge amount of effort has been devoted to understanding what the analogues of these hyperbolicity properties should be in higher dimension, and proving which varieties are hyperbolic in which ways remains a fundamental question in algebraic geometry. This project will shed further light on these questions, focusing particularly on which hypersurfaces satisfy various types of hyperbolicity properties. Furthermore, this project will help train the next generation of scientists and mathematicians through a strong educational plan aimed to K-12 students, that sees the involvement of undergraduate students and faculty. The plan includes the expanding of a tutoring program that sends undergraduate students to a South Bend school, the piloting of a program to help South Bend students make projects for Notre Dame science fair, and the training graduate students to run math circles. The PI will also train graduate students in the area of research close to this project, through mentoring and the organizing of workshops and summer schools.More specifically, the research for this project will study how the canonical bundle controls the hyperbolicity and other positivity properties of varieties of varieties. This is a fundamental driving question in algebraic, arithmetic and complex geometry. The research will focus on three principal problems. First, the PI will study the hyperbolicity of general complete intersections in projective space. This is timely given the flurry of recent activity on these questions, including work on the Kobayashi Conjecture and Debarre's Conjecture on the ampleness of the cotangent bundle of complete intersections. Second, the PI will investigate positivity properties of the moduli spaces of rational curves on very general Fano hypersurfaces in projective space, with an eye toward finding the first examples of varieties that are rationally connected but not unirational. Finally, the PI will investigate questions originating from Manin's Conjecture, studying Geometric Manin's Conjecture for Fano threefolds and classifying subvarieties of hypersurfaces with larger-than-expected a-value.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与平面中的直线相比,平面中的高次曲线具有许多特殊的性质。例如,高次曲线只有200个有理点,而直线有无穷多个有理点。高次曲线的这些性质被松散地称为双曲性性质。大量的努力一直致力于了解这些双曲性质的类似物应该在更高的维度,并证明哪些品种是双曲的方式仍然是一个基本的问题,在代数几何。这个项目将进一步阐明这些问题,特别关注哪些超曲面满足各种类型的双曲性性质。此外,该项目将通过针对K-12学生的强有力的教育计划帮助培养下一代科学家和数学家,该计划将吸引本科生和教师的参与。该计划包括扩大一项将本科生送往南本德学校的辅导计划,试点一项帮助南本德学生为圣母大学科学博览会制作项目的计划,以及培训研究生管理数学圈。PI还将通过指导和组织研讨会和暑期学校来培训与该项目相关的研究领域的研究生。更具体地说,该项目的研究将研究正则束如何控制各种品种的双曲性和其他正性属性。这是一个基本的驱动问题,在代数,算术和复杂的几何。研究将集中在三个主要问题上。首先,PI将研究射影空间中一般完全交的双曲性。这是及时考虑到最近的活动对这些问题,包括工作的小林猜想和德巴尔的猜想的余切丛的丰富性完全交叉。其次,PI将研究射影空间中非常一般的Fano超曲面上有理曲线的模空间的正性性质,着眼于找到有理连通但非单有理的簇的第一个例子。最后,PI将调查源于Manin猜想的问题,研究Fano三重的几何Manin猜想,并对a值大于预期的超曲面的子簇进行分类。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rational curves on del Pezzo surfaces in positive characteristic
- DOI:10.1090/btran/138
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:Roya Beheshti;Brian Lehmann;Eric Riedl;Sho Tanimoto
- 通讯作者:Roya Beheshti;Brian Lehmann;Eric Riedl;Sho Tanimoto
Clustered families and applications to Lang-type conjectures
聚类族及其在 Lang 型猜想中的应用
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Coskun, Izzet;Riedl, Eric
- 通讯作者:Riedl, Eric
Moduli spaces of rational curves on Fano threefolds
Fano 三重上有理曲线的模空间
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Beheshti, Roya;Lehmann, Brian;Riedl, Eric;Tanimoto, Sho
- 通讯作者:Tanimoto, Sho
Restricted tangent bundles for general free rational curves
一般自由有理曲线的限制切丛
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Lehmann, Brian;Riedl, Eric
- 通讯作者:Riedl, Eric
Restrictions on rational surfaces lying in very general hypersurfaces
对非常一般的超曲面中的有理曲面的限制
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Beheshti, Roya;Riedl, Eric
- 通讯作者:Riedl, Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Riedl其他文献
Kontsevich spaces of rational curves on Fano hypersurfaces
Fano 超曲面上有理曲线的 Kontsevich 空间
- DOI:
10.1515/crelle-2016-0027 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Eric Riedl;David H Yang - 通讯作者:
David H Yang
Largest and Smallest Minimal Percolating Sets in Trees
树中最大和最小的最小渗透集
- DOI:
10.37236/2152 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Eric Riedl - 通讯作者:
Eric Riedl
Algebraic hyperbolicity of very general surfaces
- DOI:
10.1007/s11856-022-2379-2 - 发表时间:
2022-11-17 - 期刊:
- 影响因子:0.800
- 作者:
Izzet Coskun;Eric Riedl - 通讯作者:
Eric Riedl
Positivity results for spaces of rational curves
有理曲线空间的正结果
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:1.3
- 作者:
Roya Beheshti;Eric Riedl - 通讯作者:
Eric Riedl
Graph-Coloring Ideals: Nullstellensatz Certificates, Gröbner Bases for Chordal Graphs, and Hardness of Gröbner Bases
图着色理想:Nullstellensatz 证书、弦图的 Gröbner 基以及 Gröbner 基的硬度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
J. D. Loera;S. Margulies;Michael Oesterle;Eric Riedl;D. Rolnick;Gwen Spencer;Despina Stasi;Jon Swenson - 通讯作者:
Jon Swenson
Eric Riedl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Riedl', 18)}}的其他基金
Conference: Center for Mathematics at Notre Dame
会议:圣母大学数学中心
- 批准号:
2312044 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2896389 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Higher rank hyperbolicity and homological isoperimetric inequalities
高阶双曲性和同调等周不等式
- 批准号:
2785744 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
- 批准号:
RGPIN-2019-04775 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Hyperbolicity with Singularities and Coexistence via Smoothing
双曲性与奇点以及通过平滑的共存
- 批准号:
2154378 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Algebraic Hyperbolicity and Lang Conjecture
代数双曲性和 Lang 猜想
- 批准号:
RGPIN-2019-04775 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
The Role of Gromov Hyperbolicity and Besov Spaces in Quasiconformal Analysis
格罗莫夫双曲性和贝索夫空间在拟共形分析中的作用
- 批准号:
2054960 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Generalizations of hyperbolicity
双曲性的概括
- 批准号:
564135-2021 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
University Undergraduate Student Research Awards
Generalized hyperbolicity and the geometry of algebraic varieties
广义双曲性和代数簇的几何
- 批准号:
RGPIN-2016-05294 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
Beyond Hyperbolicity at the Ohio State University
俄亥俄州立大学的超越双曲性
- 批准号:
2000885 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant