CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
基本信息
- 批准号:1945452
- 负责人:
- 金额:$ 48.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Determining whole number solutions to polynomial equations has been an active area of study for at least two millennia. Nevertheless, many questions remain, and these equations continue to be crucially important, as the techniques used to study them have helped shape the foundation of modern cryptosystems. In 1922, Louis Mordell conjectured that equations defining curves of genus at least 2 have only finitely many rational solutions. Gerd Faltings proved this in 1983, but his proof does not explicitly yield the set of rational points on these curves. Algorithmically determining this set is one of the most fundamental open problems in number theory. Quadratic Chabauty is a new approach to determining the set of rational points, and through a combination of theoretical and computational strategies, the PI will give quadratic Chabauty algorithms to determine rational points on new classes of curves. This project also includes several educational and outreach components, including a collection of undergraduate-focused workshops in Guam on the topic of computational tools, aimed at broadening participation of traditionally underrepresented groups in STEM. The PI will also co-organize a week-long summer program in mathematical exploration and computation for high school students in the Boston area, as well as a semester program at Mathematical Sciences Research Institute on Diophantine geometry.The main research themes are centered on algorithms for determining rational points on curves of genus at least 2, using p-adic heights.They include the following: using p-adic heights to produce a quadratic Chabauty algorithm for modular curves, developing an elliptic quadratic Chabauty algorithm to study twisted Fermat curves, and building infrastructure in Coleman integration and p-adic heights in families. These new algorithms will be run on large databases of curves, and the resulting data will be analyzed and shared with the mathematical community. This has the potential to yield new insight into refined hypotheses under which theorems can be proved, as well as more precise conjectures to investigate.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
确定多项式方程的整数解至少两千年来一直是一个活跃的研究领域。然而,许多问题仍然存在,这些方程仍然至关重要,因为用于研究它们的技术帮助塑造了现代密码系统的基础。1922年,Louis Mordell猜想,定义亏格至少为2的曲线的方程只有有限多个有理解。Gerd Faltings在1983年证明了这一点,但他的证明并没有明确地给出这些曲线上的有理点集。用算法确定这个集合是数论中最基本的公开问题之一。二次Chabauty是一种确定有理点集的新方法,通过理论和计算策略的结合,PI将给出确定新曲线类上有理点的二次Chabauty算法。该项目还包括几个教育和宣传部分,包括在关岛举办的一系列以计算工具为主题的本科生讲习班,目的是扩大传统上任职人数不足的群体对STEM的参与。PI还将为波士顿地区的高中生共同组织一个为期一周的数学探索和计算暑期计划,以及数学科学研究所丢番图几何的一个学期计划。主要研究主题是使用p进高确定至少2亏格曲线上有理点的算法。它们包括以下内容:使用p进高产生模曲线的二次Chabauty算法,开发椭圆二次Chabauty算法来研究扭曲的Fermat曲线,以及在家庭中建立Coleman积分和p进高的基础设施。这些新算法将在大型曲线数据库上运行,所产生的数据将被分析并与数学界共享。这有可能为证明定理的精细化假设提供新的见解,并为研究提供更精确的猜想。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quadratic Chabauty for modular curves: algorithms and examples
模曲线的二次 Chabauty:算法和示例
- DOI:10.1112/s0010437x23007170
- 发表时间:2023
- 期刊:
- 影响因子:1.8
- 作者:Balakrishnan, Jennifer S.;Dogra, Netan;Müller, J. Steffen;Tuitman, Jan;Vonk, Jan
- 通讯作者:Vonk, Jan
Even Values of Ramanujan’s Tau-Function
拉马努金 Tau 函数的偶数值
- DOI:10.1007/s44007-021-00005-8
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Balakrishnan, Jennifer S.;Ono, Ken;Tsai, Wei-Lun
- 通讯作者:Tsai, Wei-Lun
Rational points on hyperelliptic Atkin-Lehner quotients of modular curves and their coverings
模曲线及其覆盖的超椭圆 Atkin-Lehner 商上的有理点
- DOI:10.1007/s40993-022-00388-9
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Adžaga, Nikola;Chidambaram, Shiva;Keller, Timo;Padurariu, Oana
- 通讯作者:Padurariu, Oana
A tale of three curves
三个曲线的故事
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Balakrishnan, Jennifer S.
- 通讯作者:Balakrishnan, Jennifer S.
Corrigendum to “Variants of Lehmer's speculation for newforms” [Adv. Math. 428 (2023) 109141]
勘误“莱默对新形式的推测的变体”[Adv.
- DOI:10.1016/j.aim.2023.109347
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Balakrishnan, Jennifer S.;Craig, William;Ono, Ken;Tsai, Wei-Lun
- 通讯作者:Tsai, Wei-Lun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Balakrishnan其他文献
Jennifer Balakrishnan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Balakrishnan', 18)}}的其他基金
Rational Points on Curves and Iterated p-adic Integrals
曲线上的有理点和迭代 p 进积分
- 批准号:
1702196 - 财政年份:2017
- 资助金额:
$ 48.77万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
- 批准号:
1945224 - 财政年份:2020
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
- 批准号:
1750140 - 财政年份:2018
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
2016 Presidential and AAAS Mentor Alumni Meeting: New Directions for Inclusive STEM Education & Career Mentoring
2016 年总统暨 AAAS 导师校友会:包容性 STEM 教育新方向
- 批准号:
1631967 - 财政年份:2016
- 资助金额:
$ 48.77万 - 项目类别:
Standard Grant
CAREER: New Directions for Metric Learning
职业:度量学习的新方向
- 批准号:
1550179 - 财政年份:2015
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
CAREER: New Directions in Deep Representation Learning from Complex Multimodal Data
职业:复杂多模态数据深度表示学习的新方向
- 批准号:
1453651 - 财政年份:2015
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
- 批准号:
1519890 - 财政年份:2014
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
CAREER: New Directions in Arithmetic Computation
职业:算术计算的新方向
- 批准号:
1350572 - 财政年份:2014
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
- 批准号:
1254840 - 财政年份:2013
- 资助金额:
$ 48.77万 - 项目类别:
Continuing Grant