CAREER: New Directions in Spatial Statistics

职业:空间统计的新方向

基本信息

  • 批准号:
    1519890
  • 负责人:
  • 金额:
    $ 35.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

The de Wijs process (also known as the Gaussian free field in statistical physics) is a fundamental spatial process that arises as the scaling limit of lattice based Gaussian Markov random fields and generalizes Brownian motion in two-dimensions. However, at present, there is a wide gap between the theory of Gaussian free field (including the subsequent theory of random fields) in statistical physics and modern probability, and the current practice of spatial statistics via lattice based Gaussian Markov random fields. Thus, there is great need to bridge this gap to develop a principled framework for statistics and inference of spatial models and to pursue novel computations that make such inferences feasible. This project will consider formulating appropriate functionals of the de Wijs process to construct useful random fields and novel matrix-free computations via conjugate gradient and other methods, and will focus on developing new areas of scientific applications. The proposed research will also shed new light on and allow deeper understanding of theoretical and computational issues discussed by many researchers in spatial statistics in the past decades. Novel matrix-free computations will provide further impetus to study parametric bootstrap methods and multi-scale modeling, and to construct a new class of non-Gaussian random fields. The project will contribute to obtaining enhanced scientific understanding in studies of environmental bioassays, arsenic contamination of groundwater and distributions of galaxies. Advances in the field of spatial statistics are important because new statistical methods can be applied to a wide range of scientific questions in fields such as astronomy, agriculture, biomedical imaging, computer vision, climate and environmental studies, epidemiology and geology. The de Wijs process is one fundamental spatial process that generalizes Brownian motion from time to space. Using the de Wijs process as a fundamental building block, this project will develop novel mathematics and derive fast, efficient and large-scale statistical computations so that various scientific questions can be answered in a practical way. This will lead to new developments for the analysis of continuum spatial data and spatial point patterns, and will allow us to obtain enhanced scientific understanding in studies of environmental bioassays, arsenic contamination of groundwater and distributions of galaxies. The statistics and the computations that will be developed in this project will also be particularly relevant for various research problems that arise in environmental or global change, and in health studies. Finally, this project will integrate research and educational activities through the development of new graduate and undergraduate courses and will also provide valuable training and learning opportunities for students at graduate and undergraduate levels.
德维伊斯过程(英语:de Wijs process)(也被称为高斯自由场)是一个基本的空间过程,它是基于格点的高斯马尔可夫随机场的标度极限,并在二维中推广了布朗运动。然而,目前统计物理学中的高斯自由场理论(包括后来的随机场理论)和现代概率论,以及目前基于格点的高斯马尔可夫随机场的空间统计实践之间存在着很大的差距。因此,有很大的需要弥合这一差距,制定一个原则性的框架,统计和空间模型的推断,并追求新的计算,使这种推断可行。 该项目将考虑通过共轭梯度和其他方法制定de Wijs过程的适当泛函,以构建有用的随机场和新的无矩阵计算,并将专注于开发新的科学应用领域。拟议的研究还将为过去几十年来许多空间统计研究人员讨论的理论和计算问题提供新的思路和更深入的理解。 新的无矩阵计算将为研究参数自举方法和多尺度建模提供进一步的动力,并构建一类新的非高斯随机场。 该项目将有助于提高对环境生物测定、地下水砷污染和星系分布等研究的科学认识。空间统计领域的进展很重要,因为新的统计方法可以应用于天文学、农业、生物医学成像、计算机视觉、气候和环境研究、流行病学和地质学等领域的广泛科学问题。de Wijs过程是将布朗运动从时间推广到空间的一个基本空间过程。 使用de Wijs过程作为基本构建块,该项目将开发新的数学,并导出快速,高效和大规模的统计计算,以便以实用的方式回答各种科学问题。这将导致连续空间数据和空间点模式分析的新发展,并使我们能够在环境生物测定、地下水砷污染和星系分布的研究中获得更深入的科学理解。 在这个项目中开发的统计数据和计算也将与环境或全球变化以及健康研究中出现的各种研究问题特别相关。最后,该项目将通过开发新的研究生和本科生课程,整合研究和教育活动,并为研究生和本科生提供宝贵的培训和学习机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debashis Mondal其他文献

Photocontrolled activation of doubly emo/em-nitrobenzyl-protected small molecule benzimidazoles leads to cancer cell death
光控激活双 emo/em-硝基苄基保护的小分子苯并咪唑导致癌细胞死亡
  • DOI:
    10.1039/d3sc01786a
  • 发表时间:
    2023-08-23
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Manzoor Ahmad;Naveen J. Roy;Anurag Singh;Debashis Mondal;Abhishek Mondal;Thangavel Vijayakanth;Mayurika Lahiri;Pinaki Talukdar
  • 通讯作者:
    Pinaki Talukdar
High-frequency rectifiers based on type-II Dirac fermions
  • DOI:
    doi.org/10.1038/s41467-021-21906-w
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Libo Zhang;Zhiqingzi Chen;Kaixuan Zhang;Lin Wang;Huang Xu;Li Han;Wanlong Guo;Yao Yang;Chia-Nung Kuo;Chin Shan Lue;Debashis Mondal;Jun Fuji;Ivana Vobornik;Barun Ghosh;Amit Agarwal;Huaizhong Xing;Xiaoshuang Chen;Antonio Politano;Wei Lu
  • 通讯作者:
    Wei Lu
Wavelet variances for heavy‐tailed time series
重尾时间序列的小波方差
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Rodney V. Fonseca;Debashis Mondal;L. Zhang
  • 通讯作者:
    L. Zhang
Progress and prospects toward supramolecular bioactive ion transporters
超分子生物活性离子转运体的进展与前景
  • DOI:
    10.1039/d2cc06761g
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Abhishek Mondal;Manzoor Ahmad;Debashis Mondal;Pinaki Talukdar
  • 通讯作者:
    Pinaki Talukdar
PAC Guarantees and Effective Algorithms for Detecting Novel Categories
PAC 保证和检测新类别的有效算法
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Si Liu;Risheek Garrepalli;Dan Hendrycks;Alan Fern;Debashis Mondal;Thomas G. Dietterich
  • 通讯作者:
    Thomas G. Dietterich

Debashis Mondal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debashis Mondal', 18)}}的其他基金

Distance-Based Analysis for Complex High-Dimensional Data
复杂高维数据的基于距离的分析
  • 批准号:
    2113771
  • 财政年份:
    2021
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Standard Grant
Distance-Based Analysis for Complex High-Dimensional Data
复杂高维数据的基于距离的分析
  • 批准号:
    2217007
  • 财政年份:
    2021
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Standard Grant
Markov Random Fields, Geostatistics and Matrix-Free Computation
马尔可夫随机场、地统计学和无矩阵计算
  • 批准号:
    2153669
  • 财政年份:
    2021
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Standard Grant
Markov Random Fields, Geostatistics and Matrix-Free Computation
马尔可夫随机场、地统计学和无矩阵计算
  • 批准号:
    1916448
  • 财政年份:
    2019
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Standard Grant
2016 International Indian Statistical Association conference `Statistical and Data Sciences: A Key to Healthy People, Planet and Prosperity'
2016 年国际印度统计协会会议“统计和数据科学:人类健康、地球和繁荣的关键”
  • 批准号:
    1636648
  • 财政年份:
    2016
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Standard Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
  • 批准号:
    1254840
  • 财政年份:
    2013
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
Connecting Markov Random Fields with Geostatistical Models
连接马尔可夫随机场与地统计模型
  • 批准号:
    0906300
  • 财政年份:
    2009
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
  • 批准号:
    2339274
  • 财政年份:
    2024
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
  • 批准号:
    2239106
  • 财政年份:
    2023
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
  • 批准号:
    1945452
  • 财政年份:
    2020
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
  • 批准号:
    1945224
  • 财政年份:
    2020
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
  • 批准号:
    1750140
  • 财政年份:
    2018
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
2016 Presidential and AAAS Mentor Alumni Meeting: New Directions for Inclusive STEM Education & Career Mentoring
2016 年总统暨 AAAS 导师校友会:包容性 STEM 教育新方向
  • 批准号:
    1631967
  • 财政年份:
    2016
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Standard Grant
CAREER: New Directions in Deep Representation Learning from Complex Multimodal Data
职业:复杂多模态数据深度表示学习的新方向
  • 批准号:
    1453651
  • 财政年份:
    2015
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
CAREER: New Directions for Metric Learning
职业:度量学习的新方向
  • 批准号:
    1550179
  • 财政年份:
    2015
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Arithmetic Computation
职业:算术计算的新方向
  • 批准号:
    1350572
  • 财政年份:
    2014
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
  • 批准号:
    1254840
  • 财政年份:
    2013
  • 资助金额:
    $ 35.18万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了