CAREER: Impact-Adaptive Conducting Polymers

职业:冲击适应性导电聚合物

基本信息

  • 批准号:
    1945664
  • 负责人:
  • 金额:
    $ 61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL SUMMARY Next-generation wearable or on-skin electronics have the potential to transform personalized biomedical care by providing non-invasive, constant biometrics monitoring. Stretchable conducting polymers, a special type of plastic that conducts electricity and deforms with body movement, have become a main class of materials for such applications. However, these polymers break more easily when deformed at a faster rate because of their intrinsic mechanical properties. This is detrimental for electronics to be applied directly on human bodies since they are constantly undergoing dynamic movement. This CAREER project aims to develop a new class of adaptive stretchable conducting polymers with toughness that will scale with the rate of deformation. Specifically, the PI will explore and elucidate the fundamental chemical design principles for realizing and manipulating these adaptive mechanical properties. Successful execution of this project will lead to plastic electronics with enhanced stability, reliability, and practicality for next-generation wearable or on-skin electronics. These properties could also result in longer use cycles, and therefore reducing plastic waste and contributing to preservation of our environment. The educational objective of this project is to increase the scientific literacy in Central California, a historically underserved region, and create a more diversified future STEM workforce. Specifically, the PI will develop low-cost 3D printing tools for local K-12 students to experimenting with various classes of polymers and learn the diversity, pervasiveness, and important role that polymers play in our lives. Modified versions of these experiments will be integrated into the undergraduate curriculum at UC Merced, a Hispanic Serving Institution, to expose undergraduate students to new soft materials and educate them at the forefront of polymer science. The PI also plans to publish these outreach experiments in an education journal, with the hope of disseminating this low-cost technology to increase scientific literacy and knowledge of polymers across the globe.TECHNICAL SUMMARY A key challenge in realizing practical wearable and on-skin electronics using conducting polymers is to overcome their viscoelasticity. This strain rate-dependent property is highly detrimental as wearable and on-skin electronics made using these polymers would be prone to damage when used under conditions involving sudden movements and impact, such as during sports. This CAREER project aims to develop a set of chemical design principles for creating a new class of stretchable conducting polymers that defy this classic, unfavorable strain rate behavior. This objective will be realized by creating two competing deformation mechanisms at the molecular chain and nanoscopic domain levels. In phase I of the project, the PI will design and synthesize a number of conducting polymers with chemical structures that favor the formation of interpenetrated micelles. Different secondary interactions will be incorporated at the surface and interior of the micelles to serve as functional handles for tuning the two competing deformation mechanisms. Phase II of the project will employ a full suite of chemical, mechanical, electrical and structural characterization techniques to study these polymers. In particular, in-situ resistance/tensile/small- and wide-angle X-ray scattering will be used to decipher the structure-property relationships and deformation mechanisms at the surface and interior of the micelles across various length scales. Phase III of the project is aimed at optimizing the electrical conductivity of these impact-adaptive conducting polymers by creating effective charge transport pathways on the surface of the micelles. The polymer design principles and mechanistic insights gained through this project will lead to a body of fundamental knowledge for creating polymeric conductors that have toughness adaptive towards the degree of impact..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术概述下一代可穿戴或皮肤上的电子设备通过提供非侵入性的、持续的生物特征监测,有可能改变个性化的生物医学护理。可伸缩导电聚合物是一种特殊类型的塑料,可以导电并随着身体的运动而变形,已成为此类应用的主要材料类别。然而,由于其固有的机械性能,这些聚合物在以更快的速度变形时更容易断裂。这对直接应用在人体上的电子设备是不利的,因为它们不断地经历动态运动。这一职业项目旨在开发一种新型的适应性可伸缩导电聚合物,其韧性将随着变形速度的变化而变化。具体地说,PI将探索和阐明实现和操纵这些自适应机械性能的基本化学设计原则。该项目的成功实施将使塑料电子产品具有更高的稳定性、可靠性和实用性,可用于下一代可穿戴或皮肤电子产品。这些特性还可以延长使用周期,从而减少塑料垃圾,有助于保护我们的环境。该项目的教育目标是提高加州中部的科学素养,这是一个历史上服务不足的地区,并创造出一支更多样化的未来STEM劳动力队伍。具体地说,PI将为当地K-12学生开发低成本的3D打印工具,让他们试验各种类型的聚合物,了解聚合物在我们生活中扮演的多样性、普遍性和重要角色。这些实验的修改版本将被整合到加州大学默塞德分校的本科课程中,这是一家西班牙裔服务机构,让本科生接触到新的软材料,并在聚合物科学的前沿教育他们。PI还计划在一本教育杂志上发表这些扩展实验,希望传播这项低成本的技术,以提高全球对聚合物的科学素养和知识。技术摘要使用导电聚合物实现实用的可穿戴和皮肤上电子产品的关键挑战是克服它们的粘弹性。这种应变率相关特性是非常有害的,因为使用这些聚合物制造的可穿戴和皮肤上的电子设备在涉及突然移动和冲击的条件下使用时,例如在运动期间,很容易损坏。这个职业项目旨在开发一套化学设计原则,以创造一种新的可拉伸导电聚合物,无视这种经典的、不利的应变率行为。这一目标将通过在分子链和纳米结构域水平上创建两个相互竞争的变形机制来实现。在该项目的第一阶段,PI将设计和合成一些具有有利于形成互穿胶束的化学结构的导电聚合物。不同的二次相互作用将被结合在胶束的表面和内部,作为调节两个相互竞争的变形机制的功能手柄。该项目的第二阶段将采用一整套化学、机械、电气和结构表征技术来研究这些聚合物。特别是,原位电阻/拉伸/小角和广角X射线散射将被用来破译不同长度尺度上胶束表面和内部的结构-性质关系和变形机制。该项目的第三阶段旨在通过在胶束表面创建有效的电荷传输路径来优化这些冲击适应性导电聚合物的导电性。通过该项目获得的聚合物设计原则和机械洞察力将为创造具有适应影响程度的韧性的聚合物导体带来一系列基础知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conjugated polymers: From synthesis, transport properties, to device applications
共轭聚合物:从合成、传输特性到器件应用
3D printed architected conducting polymer hydrogels
  • DOI:
    10.1039/d1tb00877c
  • 发表时间:
    2021-06-08
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Jordan, Robert S.;Frye, Jacob;Wang, Yue
  • 通讯作者:
    Wang, Yue
Imparting High Conductivity to 3D Printed PEDOT:PSS
  • DOI:
    10.1021/acsapm.3c00232
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Ian M. Hill;Victor Hernandez;Bohao Xu;Josiah A. Piceno;J. Misiaszek;Adrian Giglio;Emily Junez;Jiajun Chen;P. Ashby;Robert S. Jordan;Yue Wang
  • 通讯作者:
    Ian M. Hill;Victor Hernandez;Bohao Xu;Josiah A. Piceno;J. Misiaszek;Adrian Giglio;Emily Junez;Jiajun Chen;P. Ashby;Robert S. Jordan;Yue Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yue Wang其他文献

Extended convolution model for computing the far-field directivity of an amplitude-modulated parametric loudspeaker
用于计算调幅参数扬声器远场指向性的扩展卷积模型
  • DOI:
    10.1088/1361-6463/ac5bcd
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chuang Shi;Yue Wang;Han Xiao;Huiyong Li
  • 通讯作者:
    Huiyong Li
A pose pruning driven solution to pose feature GraphSLAM
姿态剪枝驱动的姿态特征 GraphSLAM 解决方案
  • DOI:
    10.1080/01691864.2014.998707
  • 发表时间:
    2015-01
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Yue Wang;Rong Xiong;Shoudong Huang
  • 通讯作者:
    Shoudong Huang
Evaluation and Improvement of Yamaguchi University Self-Assessment and Evaluation System
山口大学自评评价体系的评价与改进
Source camera identification for re-compressed images: A model perspective based on tri-transfer learning
重新压缩图像的源相机识别:基于三迁移学习的模型视角
  • DOI:
    10.1016/j.cose.2020.102076
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Guowen Zhang;Bo Wang;Fei Wei;Kaize Shi;Yue Wang;Xue Sui;Meineng Zhu
  • 通讯作者:
    Meineng Zhu
span style=font-family:Times New Roman;font-size:12pt;Thermophysical properties of /spanspan style=font-family:Times New Roman;font-size:12pt;Lasub2/sub(Zrsub0
La2(Zr0)的热物理性质
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Chunjie Wang;Yue Wang
  • 通讯作者:
    Yue Wang

Yue Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yue Wang', 18)}}的其他基金

Travel: Student Support for the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2024)
旅行:学生支持第 47 届国际 ACM SIGIR 信息检索研究与发展会议 (SIGIR 2024)
  • 批准号:
    2409649
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
  • 批准号:
    2413622
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
  • 批准号:
    2136202
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
CAREER: Cooperative Control and Decision-Making for Human-Agent Collaborative Teams
职业:人类代理协作团队的协作控制和决策
  • 批准号:
    1454139
  • 财政年份:
    2015
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant

相似国自然基金

The Heterogenous Impact of Monetary Policy on Firms' Risk and Fundamentals
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
基于ImPACT方案的家长干预对孤独症谱系障碍儿童干预疗效及神经生物学机制研究
  • 批准号:
    82301732
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
2型糖尿病胰岛β细胞功能调控新靶点IMPACT的功能及作用机制研究
  • 批准号:
    81600598
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于IMPACT模型的社区慢性病干预效果的经济学评价研究
  • 批准号:
    71303173
  • 批准年份:
    2013
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Intended and Unintended Impact of Policy for Adaptive Policy Management
适应性政策管理政策的预期和非预期影响
  • 批准号:
    LP230100121
  • 财政年份:
    2024
  • 资助金额:
    $ 61万
  • 项目类别:
    Linkage Projects
NSF PRFB FY 2023: The impact of changes in genome structure on diversification in adaptive radiation.
NSF PRFB 2023 财年:基因组结构变化对适应性辐射多样化的影响。
  • 批准号:
    2305927
  • 财政年份:
    2023
  • 资助金额:
    $ 61万
  • 项目类别:
    Fellowship Award
Defining the impact of complement inhibition by tick saliva in tick-borne virus evolution and adaptive immune responses in murine models of infection
定义蜱唾液抑制补体对蜱传病毒进化和小鼠感染模型适应性免疫反应的影响
  • 批准号:
    10535945
  • 财政年份:
    2023
  • 资助金额:
    $ 61万
  • 项目类别:
The Impact of an Adaptive Patient-Centered Web Application on Medication Optimization in HFrEF Patients
以患者为中心的自适应 Web 应用程序对 HFrEF 患者药物优化的影响
  • 批准号:
    10555719
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
Collaborative Research: Adaptive Bridge or Barrier? The Impact of Horizontal Transfer on Genetic Evolution
协作研究:自适应桥梁还是障碍?
  • 批准号:
    2142720
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
The Evolution of Ecological Stability and its Impact on Ecosystem Resilience and Adaptive Potential
生态稳定性的演变及其对生态系统复原力和适应潜力的影响
  • 批准号:
    2708781
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
    Studentship
Improved representation, impact assessment, and adaptive management of water resource systems under changing natural and anthropogenic conditions
在不断变化的自然和人为条件下改进水资源系统的代表性、影响评估和适应性管理
  • 批准号:
    RGPIN-2020-05563
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
    Discovery Grants Program - Individual
The Impact of an Adaptive Patient-Centered Web Application on Medication Optimization in HFrEF Patients
以患者为中心的自适应 Web 应用程序对 HFrEF 患者药物优化的影响
  • 批准号:
    10708814
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
Collaborative Research: Adaptive Bridge or Barrier? The Impact of Horizontal Transfer on Genetic Evolution
协作研究:自适应桥梁还是障碍?
  • 批准号:
    2142718
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Bridge or Barrier? The Impact of Horizontal Transfer on Genetic Evolution
协作研究:自适应桥梁还是障碍?
  • 批准号:
    2142719
  • 财政年份:
    2022
  • 资助金额:
    $ 61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了