Grain and Phase Boundaries in Mantle Assemblages: Atom Probe and Electron Microscopy/Diffraction Approaches

地幔组合中的晶粒和相边界:原子探针和电子显微镜/衍射方法

基本信息

  • 批准号:
    1947439
  • 负责人:
  • 金额:
    $ 51.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

The research pursued under this grant seeks to enhance understanding of the chemistry and physics of grain boundaries in crystalline solids, with particular emphasis on boundaries in silicate materials representative of the upper mantle of the Earth. Typical crystalline solids consist of myriad crystals (grains), frequently having random spatial orientation, bonded together across ribbon-like, two-dimensional boundaries. These boundaries have specific structure and chemistry, different in fundamental ways from the grains on either side; the boundaries frequently control the physical properties of the solid overall, e.g., strength, viscosity, electrical and ionic conductivity, optical transmittance, etc. In Earth and planetary science, the community’s interests reflect the breadth of these properties, although particularly the mechanical and electrochemical ones: boundaries between grains of the same mineral, boundaries between grains of different minerals (phase boundaries) and boundaries between minerals and melts affect directly phenomena such as (i) the rate of mantle deformation (which effects plate tectonics), (ii) the attenuation of seismic wave energy, and (iii) the chemical composition of magmas (particularly of trace elements, which facilitates understanding of melting and magma-migration processes in the Earth). Prominent in this specific research is the application of a new and exciting analytical technique to the study of grain- and phase-boundary structure and chemistry: atom probe tomography (APT). With appropriate care in specimen preparation and data analysis, APT can characterize boundary chemistry at the very atomic scale, allowing precise questions concerning materials dynamics to be posed and scrutinized. A beauty of the approach is that one can so learn the physics of scaling of mechanical and chemical responses from the sub-nanometer to the kilometer-plus dimensions. The research has implications both economic and in workforce development. Grain- and phase-boundary structure and chemistry in ionic and covalent-bonded solids (as are minerals) is a primary concern in the development of advanced ceramics for battery/fuel cell, photovoltaic, and structural applications. Employing APT in an effective way for the chemical design of grain/phase boundaries is a direct extension of the research supported here. The “effective way” caveat has everything to do with advances in APT approach (specimen preparation, imaging conditions, data analysis): these necessary advances will constitute no small part of the education accumulated—and promulgated—by the program participants. The research specifically focuses on grain and phase boundary structure and chemistry in (a) deformed rock of upper-mantle chemistry/mineralogy (olivine plus pyroxenes) and (b) olivine grain boundary interface(s) with a host magma. The former focus examines mantle aggregates deformed (experimentally) in diffusion creep–grain/phase boundary sliding. Characterizing the impact of the spatial orientation of deviatoric stress on boundary structure and chemistry can elucidate aspects of the physics of plastic instability in the mantle—a crucial issue in creating and sustaining plate tectonics. The latter focus addresses issues in the crystallization of basaltic magma and the role grain boundaries might play in (i) storing incompatible trace elements as well as (ii) affecting/effecting the mobilization of large magma bodies that are partially crystallized.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该赠款下的研究旨在增强对晶体固体中晶界的化学和物理的理解,特别强调代表地球上层地幔的有机硅材料的边界。典型的晶体固体由众多晶体(晶粒)组成,通常具有随机的空间取向,并在带状的二维边界上粘合在一起。这些边界具有特定的结构和化学反应,其基本方式不同于两侧的谷物。边界经常控制固体总体的物理特性,例如强度,粘度,电气和离子电导率,光传递性,光学传播等,在地球和行星科学中,社区的兴趣反映了这些特性的宽度,尽管机械和电化学的范围:尤其是机械和电化学的界限:在同一矿物质之间的边界以及不同矿物质之间的边界之间的界限(阶段),而不是在不同的矿物质之间(相同矿物)之间的边界(阶段)之间的粒度(阶段)之间的边界( (i)地幔变形速率(影响板块构造),(ii)地震波能的衰减以及(iii)岩浆的化学组成(部分意义上的痕量元素,设施理解融化和地球上的岩浆移动过程)等现象。在这项特定研究中,重要的是将一种新的令人兴奋的分析技术应用于晶粒和相结合结构和化学研究:原子探针断层扫描(APT)。通过在标本制备和数据分析中进行适当的护理,APT可以在非常原子的尺度上表征边界化学,从而可以将有关材料动力学的精确问题定位和审查。该方法的一种美是,可以学习从亚纳米到千分尺度的机械和化学反应的缩放物理学物理学。这项研究在经济和劳动力发展方面都具有含义。离子和共价固体固体(以及矿物质)中的晶粒和相结合结构以及化学是在开发用于电池/燃料电池,光伏和结构应用的晚期陶瓷的主要关注点。以有效的方式采用APT进行谷物/相边界的化学设计是此处支持的研究的直接扩展。 “有效的方法”警告与APT方法的进步有关(标本准备,成像条件,数据分析):这些必要的进步将不大的构成计划参与者所获得的教育和颁布的教育。该研究专门针对(a)上层化学/矿物学(橄榄石加辉石)和(b)带有宿主岩浆的(b)橄榄石晶界边界界面的(olivine Plus pyroxenes)和(b)橄榄石晶界的变形岩石中的晶粒和相边界结构和化学。前焦点检查地幔聚集体在扩散蠕变/相边界滑动中变形(实验性)。表征偏压应力对边界结构和化学的空间取向的影响可以阐明地幔中塑性不稳定性物理的各个方面,这是创建和维持板块构造的关键问题。后来的重点解决了基底岩浆结晶中的问题以及晶粒边界可能在(i)存储不兼容的微量元素以及(ii)影响/影响动员大型岩浆体的(部分结晶的大型岩浆体)中所扮演的问题。该奖项反映了NSF的法定任务,并通过评估范围来诚实地对其进行评估,并通过评估范围进行了评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Reid Cooper其他文献

Reid Cooper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Reid Cooper', 18)}}的其他基金

Collaborative Research: Magnesite Deformation and Potential Roles in the Slip and Seismicity of Subduction Zones
合作研究:菱镁矿变形及其在俯冲带滑动和地震活动中的潜在作用
  • 批准号:
    1623788
  • 财政年份:
    2016
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant
Transient Creep in Peridotite with Application to
橄榄岩中的瞬态蠕变及其应用
  • 批准号:
    1620474
  • 财政年份:
    2016
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Continuing Grant
Extended Defects in Olivine and their Impact on Diffusive Reaction Kinetics
橄榄石的扩展缺陷及其对扩散反应动力学的影响
  • 批准号:
    1144668
  • 财政年份:
    2012
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Continuing Grant
The Roles of Heterophase Boundaries and Subgrain Boundaries in the Plastic and Anelastic (Attneuation/Transient Creep) Responses of Peridotite
异相边界和亚晶界在橄榄岩塑性和滞弹性(衰减/瞬态蠕变)响应中的作用
  • 批准号:
    1014476
  • 财政年份:
    2010
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Continuing Grant
Effects of Deformation-Induced Microstructure, Texture and the Spatial Distribution of Phases on the Steady-State Rheology and Attenuation Response(s) of Mantle Materials
变形引起的微观结构、织构和相空间分布对地幔物质稳态流变和衰减响应的影响
  • 批准号:
    0609869
  • 财政年份:
    2006
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Origin of Magnetite and Magnetic Remanence in Submarine Basaltic Glass and Implications for Glass Paleointensities
合作研究:海底玄武岩玻璃中磁铁矿和剩磁的起源以及对玻璃古强度的影响
  • 批准号:
    0538170
  • 财政年份:
    2005
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant
Reactions Between Liquid Metal Alloys and Doped (Semiconducting) Aluminosilicate Glassmelts
液态金属合金与掺杂(半导体)铝硅酸盐玻璃熔体之间的反应
  • 批准号:
    0405063
  • 财政年份:
    2003
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant
Low-Frequency Attenuation in Polycrystalline Silicates and Silicate Partial Melts
多晶硅酸盐和硅酸盐部分熔体的低频衰减
  • 批准号:
    0405064
  • 财政年份:
    2003
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant
Low-Frequency Attenuation in Polycrystalline Silicates and Silicate Partial Melts
多晶硅酸盐和硅酸盐部分熔体的低频衰减
  • 批准号:
    0207642
  • 财政年份:
    2002
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant
Low-Frequency Attenuation in Polycrystalline Silicates and Silicate Partial Melts
多晶硅酸盐和硅酸盐部分熔体的低频衰减
  • 批准号:
    0106620
  • 财政年份:
    2001
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Standard Grant

相似国自然基金

高层钢结构建模-优化-深化的跨阶段智能设计方法
  • 批准号:
    52308142
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏化mHealth干预模式下精神障碍出院患者自杀风险管理策略的实施科学研究——基于多阶段优化策略
  • 批准号:
    72374095
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
非洲爪蟾IV型干扰素IFN-upsilon在不同发育阶段的抗病毒功能研究
  • 批准号:
    32303043
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
壳斗科植物传播前阶段种子捕食的地理格局及其驱动机制
  • 批准号:
    32371612
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计及海量多元逆变资源下垂参数动态优化的配电网多阶段协调运行研究
  • 批准号:
    52307091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Partially open grain- and phase boundaries as fluid pathways in metamorphic rocks: new observations and modelling
部分开放的晶界和相界作为变质岩中的流体路径:新的观察和建模
  • 批准号:
    273065999
  • 财政年份:
    2015
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Research Grants
Structure and properties of grain and phase boundaries in rocks
岩石中晶界和相界的结构和性质
  • 批准号:
    33811535
  • 财政年份:
    2007
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Research Units
Chemistry and Structure of Grain and Phase Boundaries: Importance for Trace Element Storage and Transport in the Mantle
晶粒和相界的化学和结构:对地幔中微量元素储存和运输的重要性
  • 批准号:
    0409719
  • 财政年份:
    2004
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Continuing Grant
Electronic Structure of Homo-phase Grain Boundaries and Correlated Percolation -Fundamental Understanding of Transport Property and Nano-scale Microstructure Control of Composite Superconductors-
同相晶界的电子结构及相关渗流-复合超导体输运特性与纳米尺度微观结构控制的基本认识-
  • 批准号:
    13305045
  • 财政年份:
    2001
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Effect of defects, dislocations, and grain boundaries on phase transitions by means of molecular simulation methods
通过分子模拟方法研究缺陷、位错和晶界对相变的影响
  • 批准号:
    12640465
  • 财政年份:
    2000
  • 资助金额:
    $ 51.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了