CRII: CIF: New Paradigms in Generalization and Information-Theoretic Analysis of Deep Neural Networks
CRII:CIF:深度神经网络泛化和信息论分析的新范式
基本信息
- 批准号:1947801
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past decade, deep learning (DL) has become the method of choice for various machine learning tasks. The realm of DL applications constantly expands, now including autonomous vehicles, robotic-assisted surgery, medical imaging, and many others. A wide societal acceptance of such technologies relies on the ability of humans to understand and trust them. Unfortunately, the exceptional practical effectiveness of DL systems is not coupled with a comprehensive theory to explain how they operate and why they are so successful on real-world data. This state of affairs obstructs a wider deployment of AI for the applications described above. To alleviate this impasse, this project seeks to open the hood of Deep Neural Networks (DNNs) that enable DL and elucidate how information is processed in these systems. Doing so would make the decisions of AI mechanisms more transparent to end users and other stakeholders, thus contributing to their understanding. Via rigorous performance guarantees, this project also aims to characterize the circumstances under which deep learning system are warranted not to fail. These advances will set the stage for the integration of high-performance AI systems in our daily lives, unlocking their invaluable potential impact. The project tackles key challenges in DL theory via a novel information-theoretic approach. The main objective is to shed light on the process by which DNNs progressively build representations --- from crude and over-redundant representations in shallow layers, to highly-clustered and interpretable ones in deeper layers --- and to give the designer more control over that process. To that end, three synergistic thrusts are pursued. First is developing novel complexity measures of internal representations by quantifying the flow of information through the DNN. Crucially, these measures are designed for efficient computation over layer dimensionalities typical to state-of-the-art networks for computer vision, speech, and text processing. The second thrust focuses on relating the developed complexity measures to the generalization capability of the network via new instance-dependent generalization bounds. The goal here is to provide performance guarantees for a given DNN in terms of efficiently computable figures of merit. Lastly, the developed machinery is further leveraged to construct tools for pruning redundant neurons/layers, visualizing the DNN's operation, and progressing DNN interpretability. Altogether, this research strives to progress the current uncertain trial-and-error process of DNN design towards the domain of deterministic engineering practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的十年中,深度学习已成为各种机器学习任务的首选方法。数字图书馆的应用领域不断扩大,现在包括自动驾驶汽车、机器人辅助手术、医学成像等许多领域。社会对这类技术的广泛接受有赖于人类理解和信任它们的能力。不幸的是,DL系统非凡的实际有效性并没有与一个全面的理论相结合来解释它们是如何操作的,以及为什么它们在真实世界的数据上如此成功。这种情况阻碍了人工智能在上述应用程序中的更广泛部署。为了缓解这一僵局,该项目试图揭开深度神经网络(DNN)的面纱,使深度神经网络能够实现数据挖掘,并阐明信息在这些系统中是如何处理的。这样做将使人工智能机制的决策对最终用户和其他利益攸关方更加透明,从而有助于他们的理解。通过严格的性能保证,该项目还旨在描述深度学习系统保证不会失败的情况。这些进展将为高性能人工智能系统在我们的日常生活中的集成奠定基础,释放其宝贵的潜在影响。该项目通过一种新的信息论方法解决了数字图书馆理论中的关键挑战。主要目的是阐明DNN逐步构建表示的过程-从浅层的粗略和过度冗余的表示,到较深层的高度聚集和可解释的表示-并让设计者对该过程有更多的控制。为此,进行了三个协同推进。首先是通过量化通过DNN的信息流来开发内部表示的新的复杂性度量。至关重要的是,这些措施旨在对计算机视觉、语音和文本处理的最先进网络中典型的层维度进行有效计算。第二个重点是通过新的依赖于实例的泛化界限,将所开发的复杂性度量与网络的泛化能力联系起来。这里的目标是在可有效计算的品质因数方面为给定的DNN提供性能保证。最后,进一步利用开发的机器来构建工具,用于剪枝冗余神经元/层,可视化DNN的操作,并提高DNN的可解释性。总之,这项研究致力于将当前DNN设计的不确定试错过程推进到确定性工程实践领域。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
k-Sliced Mutual Information: A Quantitative Study of Scalability with Dimension
- DOI:10.48550/arxiv.2206.08526
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ziv Goldfeld;K. Greenewald;Theshani Nuradha;Galen Reeves
- 通讯作者:Ziv Goldfeld;K. Greenewald;Theshani Nuradha;Galen Reeves
Capacity of Continuous Channels with Memory via Directed Information Neural Estimator
通过定向信息神经估计器存储连续通道的容量
- DOI:10.1109/isit44484.2020.9174109
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Aharoni, Ziv;Tsur, Dor;Goldfeld, Ziv;Permuter, Haim H.
- 通讯作者:Permuter, Haim H.
Neural Estimation of Statistical Divergences
统计差异的神经估计
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:6
- 作者:Sreekumar, Sreejith;Goldfeld, Ziv
- 通讯作者:Goldfeld, Ziv
Optimizing estimated directed information over discrete alphabets
优化离散字母表上的估计定向信息
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:D. Tsur, Z. Aharoni
- 通讯作者:D. Tsur, Z. Aharoni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ziv Goldfeld其他文献
Wiretap Channels With Random States Non-Causally Available at the Encoder
编码器处具有非因果可用的随机状态的窃听通道
- DOI:
10.1109/tit.2019.2952389 - 发表时间:
2020 - 期刊:
- 影响因子:2.5
- 作者:
Ziv Goldfeld;P. Cuff;H. Permuter - 通讯作者:
H. Permuter
Design of Discrete Constellations for Peak-Power-Limited complex Gaussian Channels
峰值功率受限复杂高斯信道的离散星座设计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Wasim Huleihel;Ziv Goldfeld;T. Koch;M. Madiman;M. Médard - 通讯作者:
M. Médard
Limit distribution theory for smooth p-Wasserstein distances
平滑 p-Wasserstein 距离的极限分布理论
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Ziv Goldfeld;Kengo Kato;Sloan Nietert;Gabriel Rioux - 通讯作者:
Gabriel Rioux
Optimality of the Plug-in Estimator for Differential Entropy Estimation under Gaussian Convolutions
高斯卷积下微分熵估计插件估计器的最优性
- DOI:
10.1109/isit.2019.8849414 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ziv Goldfeld;K. Greenewald;J. Weed;Yury Polyanskiy - 通讯作者:
Yury Polyanskiy
Broadcast Channels With Privacy Leakage Constraints
具有隐私泄露约束的广播频道
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:2.5
- 作者:
Ziv Goldfeld;G. Kramer;H. Permuter - 通讯作者:
H. Permuter
Ziv Goldfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ziv Goldfeld', 18)}}的其他基金
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308446 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CAREER: Smooth statistical distances for a scalable learning theory
职业:可扩展学习理论的平滑统计距离
- 批准号:
2046018 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311274 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2308597 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2241057 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: New Methods for Learning on Hypergraphs for Single-Cell Chromatin Data Analysis
合作研究:CIF:Medium:用于单细胞染色质数据分析的超图学习新方法
- 批准号:
2229306 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2132815 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: A New Paradigm for Distributed Information Processing, Simulation and Inference in Networks: The Promise of Law of Small Numbers
合作研究:CIF:小:网络中分布式信息处理、模拟和推理的新范式:小数定律的承诺
- 批准号:
2132843 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CIF: Small: New Directions in Clustering: Interactive Algorithms and Statistical Models
CIF:小型:聚类的新方向:交互式算法和统计模型
- 批准号:
2133484 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2007797 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CIF: Small: Poisson matching: A new tool for information theory
CIF:小:泊松匹配:信息论的新工具
- 批准号:
2007965 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant














{{item.name}}会员




