Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
基本信息
- 批准号:2007797
- 负责人:
- 金额:$ 31.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-convex optimization problems are ubiquitous in fields as diverse as data science, machine learning, and information science and engineering, thereby creating a need for algorithms to efficiently solve such problems. This project will study an important but less developed area in non-convex optimization, namely non-smooth and non-Lipschitz Riemannian optimization. The outcomes of this project will provide insights into important classes of non-convex optimization problems, and will lead to the development of new tools for solving them. New teaching material on non-convex optimization problems will be produced for educating the next generation students in this important class of applications. The societal impact of this exploration will be to benefit new applications in areas such as gene expression, autonomous driving and cancer studies. While existing theory and algorithms for Riemannian optimization usually require the objective function to be differentiable, in contrast this project focuses on non-smooth and non-Lipschitz Riemannian optimization. In particular, the project will study several algorithms for non-smooth optimization that are less developed in the Riemannian setting, including the manifold alternating direction method of multipliers, the inertial manifold proximal gradient method, the stochastic manifold proximal point algorithm, and the manifold prox-linear algorithm. For Riemannian optimization with a non-Lipschitz objective, the investigators will derive the corresponding optimality conditions and then design two algorithms that are based on a smoothing technique, namely the Riemannian smoothing gradient descent method and the Riemannian smoothing trust region method. The proposed algorithms will be implemented to solve real-world applications such as the clustering of single-cell RNA sequencing data, and 3D object detection and 3D tracking in autonomous driving.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非凸优化问题在数据科学、机器学习和信息科学与工程等领域普遍存在,因此需要有效解决此类问题的算法。本计画将研究非凸最佳化中一个重要但发展较少的领域,即非光滑与非Lipschitz黎曼最佳化。该项目的成果将为重要的非凸优化问题提供见解,并将导致开发新的工具来解决这些问题。新的教材非凸优化问题将产生教育下一代学生在这一重要类的应用。这一探索的社会影响将有利于基因表达、自动驾驶和癌症研究等领域的新应用。虽然现有的黎曼优化理论和算法通常要求目标函数是可微的,但相比之下,该项目专注于非光滑和非Lipschitz黎曼优化。特别是,该项目将研究几种在黎曼环境中开发较少的非光滑优化算法,包括乘子的流形交替方向方法,惯性流形近端梯度方法,随机流形近点算法和流形非线性算法。对于非Lipschitz目标的黎曼优化,研究人员将推导出相应的最优性条件,然后设计两种基于平滑技术的算法,即黎曼平滑梯度下降法和黎曼平滑信赖域法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Low-Rank Matrix Completion via an Alternating Manifold Proximal Gradient Continuation Method
- DOI:10.1109/tsp.2021.3073544
- 发表时间:2020-08
- 期刊:
- 影响因子:5.4
- 作者:Minhui Huang;Shiqian Ma;L. Lai
- 通讯作者:Minhui Huang;Shiqian Ma;L. Lai
A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance
- DOI:
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Minhui Huang;Shiqian Ma;L. Lai
- 通讯作者:Minhui Huang;Shiqian Ma;L. Lai
Riemannian Stochastic Proximal Gradient Methods for Nonsmooth Optimization over the Stiefel Manifold
- DOI:
- 发表时间:2020-05
- 期刊:
- 影响因子:0
- 作者:Bokun Wang;Shiqian Ma;Lingzhou Xue
- 通讯作者:Bokun Wang;Shiqian Ma;Lingzhou Xue
Projection Robust Wasserstein Barycenters
投影鲁棒 Wasserstein 重心
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Minhui Huang, Shiqian Ma
- 通讯作者:Minhui Huang, Shiqian Ma
Zeroth-order algorithms for nonconvex–strongly-concave minimax problems with improved complexities
用于非凸强凹极小极大问题的零阶算法,并提高了复杂性
- DOI:10.1007/s10898-022-01160-0
- 发表时间:2022
- 期刊:
- 影响因子:1.8
- 作者:Wang, Zhongruo;Balasubramanian, Krishnakumar;Ma, Shiqian;Razaviyayn, Meisam
- 通讯作者:Razaviyayn, Meisam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shiqian Ma其他文献
Low-M-Rank Tensor Completion and Robust Tensor PCA
低 M 阶张量补全和鲁棒张量 PCA
- DOI:
10.1109/jstsp.2018.2873144 - 发表时间:
2015-01 - 期刊:
- 影响因子:7.5
- 作者:
Bo Jiang;Shiqian Ma;Shuzhong Zhang - 通讯作者:
Shuzhong Zhang
求解随机非线性规划问题的基于随机近似的罚函数方法
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:2
- 作者:
Xiao Wang;Shiqian Ma;Yaxiang Yuan - 通讯作者:
Yaxiang Yuan
Conv-TasSAN: Separative Adversarial Network Based on Conv-TasNet
Conv-TasSAN:基于Conv-TasNet的分离对抗网络
- DOI:
10.21437/interspeech.2020-2371 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Chengyun Deng;Yi Zhang;Shiqian Ma;Yongtao Sha;Hui Song;Xiangang Li - 通讯作者:
Xiangang Li
带先验约束的地表参数提取的有效反演方法
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
杨华;王锦地;李小文;王彦飞;Shiqian Ma - 通讯作者:
Shiqian Ma
Applications of gauge duality in robust principal component analysis and semidefinite programming
规范对偶性在鲁棒主成分分析和半定规划中的应用
- DOI:
10.1007/s11425-016-0312-1 - 发表时间:
2016-01 - 期刊:
- 影响因子:0
- 作者:
Shiqian Ma;Junfeng Yang - 通讯作者:
Junfeng Yang
Shiqian Ma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shiqian Ma', 18)}}的其他基金
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
- 批准号:
2311275 - 财政年份:2023
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: Distributed Bilevel Optimization in Multi-Agent Systems
协作研究:多智能体系统中的分布式双层优化
- 批准号:
2326591 - 财政年份:2023
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
- 批准号:
2308597 - 财政年份:2022
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
2243650 - 财政年份:2022
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
- 批准号:
1953210 - 财政年份:2020
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326621 - 财政年份:2024
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
- 批准号:
2312872 - 财政年份:2023
- 资助金额:
$ 31.68万 - 项目类别:
Standard Grant