CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming

CRII:CIF:基于机器学习的大规模随机规划计算框架

基本信息

  • 批准号:
    1948159
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Modeling optimization problems under uncertainty is known as stochastic programming (SP). It has a variety of important applications, including disaster management, supply chain design, health care, and harvest planning. Most real-world problems are complicated enough to generate a very large-size SP model, which is difficult to solve. Quickly finding the optimal solutions of these models is critical for decision-making when facing uncertainties. Existing optimization algorithms have a limited capability of solving large-scale SP problems. Without being explicitly programmed, machine learning can give computers the ability to "learn" with data by using statistical techniques. The goal of this project is to create a machine learning-based computational framework to solve large-scale stochastic programming problems effectively and efficiently by integrating machine learning techniques into optimization algorithms. The project will broaden the scope and applicability of machine learning in operations research. Furthermore, this research will support the cross-disciplinary training of graduate and undergraduate students in engineering and computer sciences, as well as the development of new curricula in the interface of machine learning and optimization algorithms.The project will be the pioneering study of applying machine learning into stochastic programming, while existing works usually focus on using stochastic programming to improve the efficiency of machine learning algorithms. Motivated by the challenges from practices and limitations of current optimization algorithms, two research objectives are proposed: efficient sample generation and convergence acceleration, by taking sample average approximation and L-shaped algorithm as examples. The first research objective is to design a semi-supervised learning algorithm based on solution information to efficiently generate samples for sample average approximation. The second research objective is to develop a supervised learning algorithm to estimate a tight upper bound for expediting convergence of L-shaped method. The two research objectives will be achieved through five tasks: (1) semi-supervised learning-based scenario grouping; (2) supervised learning based representative scenario selection; (3) performance analysis for sample generation; (4) supervised learning based upper bound prediction; and (5) performance analysis for the machine learning-based L-shaped method. The successes of this project will generate a new class of theoretical optimization methods that facilitate various real-world applications in disaster management, supply chain design, health care and harvest planning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不确定性下的优化问题的建模被称为随机规划(SP)。它有各种重要的应用,包括灾害管理,供应链设计,医疗保健和收获计划。大多数现实世界中的问题都非常复杂,足以生成一个非常大规模的SP模型,这是很难解决的。快速找到这些模型的最优解对于面对不确定性时的决策至关重要。现有的优化算法对大规模SP问题的求解能力有限。在没有明确编程的情况下,机器学习可以让计算机通过使用统计技术来“学习”数据。该项目的目标是创建一个基于机器学习的计算框架,通过将机器学习技术集成到优化算法中,有效地解决大规模随机规划问题。该项目将扩大机器学习在运筹学中的范围和适用性。此外,该研究将支持工程和计算机科学研究生和本科生的跨学科培训,以及机器学习和优化算法接口的新课程开发。该项目将是将机器学习应用于随机规划的开创性研究,而现有的工作通常集中在使用随机规划来提高机器学习算法的效率。针对当前优化算法的局限性和实践中的挑战,以样本平均逼近和L形算法为例,提出了两个研究目标:有效的样本生成和加速收敛。第一个研究目标是设计一个基于解信息的半监督学习算法,以有效地生成样本平均逼近的样本。第二个研究目标是开发一个监督学习算法来估计一个紧的上界,以加快收敛的L形方法。这两个研究目标将通过五个任务来实现:(1)基于半监督学习的场景分组;(2)基于监督学习的代表性场景选择;(3)样本生成的性能分析;(4)基于监督学习的上限预测;(5)基于机器学习的L形方法的性能分析。该项目的成功将产生一种新的理论优化方法,促进灾害管理、供应链设计、医疗保健和收获规划等领域的各种实际应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring the Effect of Clustering Algorithms on Sample Average Approximation
探索聚类算法对样本平均近似的影响
Supplier selection in disaster operations management: Review and research gap identification
  • DOI:
    10.1016/j.seps.2022.101302
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Shaolong Hu;Z. Dong;B. Lev
  • 通讯作者:
    Shaolong Hu;Z. Dong;B. Lev
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhijie Dong其他文献

Super-resolution ultrasound imaging of cerebrovascular impairment in a mouse model of Alzheimer’s disease
阿尔茨海默病小鼠模型脑血管损伤的超分辨率超声成像
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew R. Lowerison;N. V. Chandra Sekaran;Zhijie Dong;Xi Chen;Qi You;D. Llano;Peng Song
  • 通讯作者:
    Peng Song
Effect of curvature radius on the oxidation protective ability of HfB<sub>2</sub>-SiC-MoSi<sub>2</sub>-Si/SiC-Si coating for C/C composites
  • DOI:
    10.1016/j.surfcoat.2024.131125
  • 发表时间:
    2024-08-15
  • 期刊:
  • 影响因子:
  • 作者:
    Shubo Zhang;Qiangang Fu;Zhijie Dong;Zhiqiang Liu;Hongkang Ou;Xiaoxuan Su
  • 通讯作者:
    Xiaoxuan Su
Decoupled ablation behavior analysis of multilayer glass-UHTC coating for carbon-based composites: Laser and plasma ablation environments
碳基复合材料用多层玻璃-超高温陶瓷涂层的解耦烧蚀行为分析:激光与等离子体烧蚀环境
  • DOI:
    10.1016/j.jeurceramsoc.2025.117604
  • 发表时间:
    2025-12-01
  • 期刊:
  • 影响因子:
    6.200
  • 作者:
    Xiaoxuan Li;Menglin Zhang;Dou Hu;Songlin Chen;Zhaofan Zhou;Zhijie Dong;Zhe Fan;Kefei Yan;Qiangang Fu
  • 通讯作者:
    Qiangang Fu
miR-106a mimics the nuclear factor-κB signalling pathway by targeting DR6 in rats with osteoarthritis
miR-106a 通过靶向骨关节炎大鼠中的 DR6 来模拟核因子-κB 信号通路
Towards a real-time continuous ultrafast ultrasound beamformer with programmable logic
迈向具有可编程逻辑的实时连续超快超声波束形成器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhengchang Kou;Qi You;Jihun Kim;Zhijie Dong;Matthew R. Lowerison;N. C. Sekaran;D. Llano;Peng Song;M. Oelze
  • 通讯作者:
    M. Oelze

Zhijie Dong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhijie Dong', 18)}}的其他基金

I-Corps: Social Media Misinformation Interactive Dashboard
I-Corps:社交媒体错误信息交互式仪表板
  • 批准号:
    2223343
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
  • 批准号:
    2243355
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
I-Corps: Social Media Misinformation Interactive Dashboard
I-Corps:社交媒体错误信息交互式仪表板
  • 批准号:
    2309846
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
  • 批准号:
    JCZRQN202501187
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
  • 批准号:
    2312753
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
  • 批准号:
    2312752
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236484
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
  • 批准号:
    2343869
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
NSF-AoF: Collaborative Research: CIF: Small: 6G Wireless Communications via Enhanced Channel Modeling and Estimation, Channel Morphing and Machine Learning for mmWave Bands
NSF-AoF:协作研究:CIF:小型:通过增强型毫米波信道建模和估计、信道变形和机器学习实现 6G 无线通信
  • 批准号:
    2225617
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Interpretable Fair Machine Learning: Frameworks, Robustness, and Scalable Algorithms
协作研究:CIF:小型:可解释的公平机器学习:框架、稳健性和可扩展算法
  • 批准号:
    2246417
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了