CRII: CIF: Generalizations for Matrix and Tensor Estimation

CRII:CIF:矩阵和张量估计的概括

基本信息

  • 批准号:
    1948256
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Matrix and tensor estimation are core building blocks in data science and machine learning for dealing with missing data. They have been used widely across many domains, including social computing, computer vision, and computational biology. This project seeks to advance these techniques to handle model variations that are seen in real world datasets; in particular, data collection is rarely uniform, and there is often a mix of interaction data and covariate or feature information. As an example, a biological dataset might contain known properties of individual genes, in addition to information about how genes interact. The interaction data is collected from real experiments and thus may be highly non-uniformly distributed. The techniques developed from this project could enable more efficient predictions over this dataset given less experimental data.The technical goals of this project involve generalizing matrix and tensor estimation theory and algorithms beyond uniform sampling models, and designing optimally efficient algorithms that incorporate side information together with matrix interaction data. The approach proposed focuses on similarity based collaborative filtering algorithms. For each of these model variations, the researchers plan to characterize information theoretic thresholds and minimax optimal estimation error rates, design and analyze computationally and statistically efficient algorithms, and provide confidence sets to quantify uncertainty of estimates. These results will greatly increase the flexibility of matrix and tensor estimation methods to be used for sequential decision making and high dimensional scientific data analyses.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
矩阵和张量估计是数据科学和机器学习中处理缺失数据的核心构件。它们已被广泛应用于许多领域,包括社会计算、计算机视觉和计算生物学。该项目旨在推动这些技术的发展,以处理在真实世界数据集中看到的模型变化;特别是,数据收集很少是统一的,并且经常存在交互数据和协变量或特征信息的混合。例如,生物数据集可能包含单个基因的已知属性,以及有关基因如何相互作用的信息。交互作用数据是从真实实验中收集的,因此可能是高度非均匀分布的。该项目开发的技术可以在实验数据较少的情况下对该数据集进行更有效的预测。该项目的技术目标包括推广均匀抽样模型之外的矩阵和张量估计理论和算法,并设计结合辅助信息和矩阵交互数据的最优高效算法。该方法重点研究了基于相似度的协同过滤算法。对于这些模型的每一种变化,研究人员计划表征信息理论阈值和最小最大最优估计错误率,设计和分析计算和统计上有效的算法,并提供置信度集来量化估计的不确定性。这些结果将极大地增加矩阵和张量估计方法的灵活性,用于顺序决策和高维科学数据分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ORSuite: Benchmarking Suite for Sequential Operations Models
ORSuite:顺序操作模型的基准测试套件
  • DOI:
    10.1145/3512798.3512819
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Archer, Christopher;Banerjee, Siddhartha;Cortez, Mayleen;Rucker, Carrie;Sinclair, Sean R.;Solberg, Max;Xie, Qiaomin;Lee Yu, Christina
  • 通讯作者:
    Lee Yu, Christina
Nonparametric Matrix Estimation with One-Sided Covariates
Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Tradeoff Curve
顺序公平分配:实现最优嫉妒-效率权衡曲线
Sequential Fair Allocation: Achieving the Optimal Envy-Efficiency Trade-off Curve
  • DOI:
    10.1287/opre.2022.2397
  • 发表时间:
    2023-11-23
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Sinclair,Sean R.;Jain,Gauri;Yu,Christina Lee
  • 通讯作者:
    Yu,Christina Lee
Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christina Yu其他文献

A Novel Bi-Specific T-Cell Engager Targeting ILT3 Is Potently Effective in Multiple Myeloma
  • DOI:
    10.1182/blood-2022-167584
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Francesco Di Meo;Anjushree Iyer;Keith Akama;Christina Yu;Rujin Cheng;Annamaria Cesarano;Silvia Marino;Arafat Aljoufi;Rajesh Soni;Julie M Roda;James Sissons;Ly P Vu;Monica L. Guzman;Kun Huang;David G. Roodman;Fabiana Perna
  • 通讯作者:
    Fabiana Perna
An Exploratory Study of Speech-Language Pathologists Using the Echo Show™ to Deliver Visual Supports
  • DOI:
    10.1007/s41252-018-0075-3
  • 发表时间:
    2018-08-04
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Christina Yu;Howard Shane;Ralf W. Schlosser;Amanda O’Brien;Anna Allen;Jennifer Abramson;Suzanne Flynn
  • 通讯作者:
    Suzanne Flynn
3152 – GENOMICS OF MULTIPLE MYELOMA DICTATES THE EXPRESSION OF CAR T-CELL TARGETS
  • DOI:
    10.1016/j.exphem.2020.09.159
  • 发表时间:
    2020-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christina Yu;Brian Walker;David Roodman;Kun Huang;Michel Sadelain;Fabiana Perna
  • 通讯作者:
    Fabiana Perna
Repurposing everyday technologies to provide just-in-time visual supports to children with intellectual disability and autism: a pilot feasibility study with the Apple Watch®
重新利用日常技术为智力障碍和自闭症儿童提供及时的视觉支持:Apple Watch® 的试点可行性研究
  • DOI:
    10.1080/20473869.2017.1305138
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    R. Schlosser;Amanda M. O’Brien;Christina Yu;Jennifer Abramson;Anna A Allen;Suzanne Flynn;H. Shane
  • 通讯作者:
    H. Shane
Status of Newer Chemotherapeutic Strategies for the Treatment of Metastatic Gastric Cancer
转移性胃癌新化疗策略的现状
  • DOI:
    10.2165/00024669-200504010-00005
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Varadhachary;Christina Yu;J. Ajani
  • 通讯作者:
    J. Ajani

Christina Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christina Yu', 18)}}的其他基金

CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
  • 批准号:
    2337796
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CNS Core: Medium: Resource Constrained Reinforcement Learning for Computing Systems
CNS 核心:中:计算系统的资源受限强化学习
  • 批准号:
    1955997
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
  • 批准号:
    JCZRQN202501187
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
  • 批准号:
    2331590
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: CCF: CIF: Randomized Experimentation for Systems with Time-varying Dynamics and Network Interference
职业:CCF:CIF:具有时变动态和网络干扰的系统的随机实验
  • 批准号:
    2337796
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: NSF-DST: Zak-OTFS - How to Make Communication and Radar Sensing More Predictable in 6G
CIF:小型:NSF-DST:Zak-OTFS - 如何使 6G 中的通信和雷达传感更具可预测性
  • 批准号:
    2342690
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
  • 批准号:
    2413622
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了