CRII: SaTC: Empowering Elastic-honeypot as Real-time Malicious Content Sniffers for Social Networks

CRII:SaTC:使弹性蜜罐成为社交网络的实时恶意内容嗅探器

基本信息

  • 批准号:
    1948374
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Spam messages, misinformation, disinformation and outright fraud are rampant on social networks. To separate out such malicious content from benign and useful content and protect social networks, there is a need for robust content classification systems. However, before such systems can be designed, there is a need for data that train the classifiers. Honeypots are a good way to obtain such data about malicious attacker behavior. Conventional honeypots rely on manually created artificial user accounts as lures to trap attack activities. However, such honeypots are often identified easily by smart attackers. They also suffer from lack of deployment flexibility, feature variability, network scalability, and system portability. This project develops a novel and lightweight honeypot-based malicious content capturing system that cannot be easily bypassed by attackers. The honeypot is then used to intelligently gather and automatically classify contents into likely malicious and likely benign. The goal is to mitigate the adverse effects of malicious contents and sanitize social environments, significantly elevating the security and trust of social networks. Research datasets and software toolkits are shared with the broader research community. The research findings are transitioned into educational materials in the form of book chapters and hands-on classroom materials, delivered to students at the University of Louisiana at Lafayette and also shared with other universities worldwide. The project also involves undergraduate and under-represented students for research experience. This project develops a novel and lightweight honeypot-based malicious content sniffing system, named the elastic-honeypot sniffer, to overcome drawbacks in conventional honeypot-based solutions. Two core components constitute the elastic-honeypot sniffer: (1) real-time data gathering and (2) elastic-honeypot detector. Using robust learning techniques on existing spam datasets, the project identifies features and behavior profiles of users who are found to be lucrative targets for spammers. For real-time data gathering, the elastic-honeypot dynamically deploys artificial user accounts as lures based on the learnt vulnerable user profiles to trap attackers intelligently. The main advantages over conventional honeypot technology are node availability, deployment flexibility, features variability, network scalability, and system portability. The data captured by the elastic-honeypot sniffer is used to design robust classification techniques to differentiate between malicious and benign content that are resilient against adversarial attacks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
垃圾短信、错误信息、虚假信息和彻头彻尾的欺诈在社交网络上猖獗。为了将此类恶意内容从良性和有用的内容中分离出来,并保护社交网络,需要强大的内容分类系统。然而,在设计这样的系统之前,需要训练分类器的数据。蜜罐是获取有关恶意攻击者行为的此类数据的好方法。传统的蜜罐依赖于手动创建的人工用户帐户作为诱饵来诱捕攻击活动。然而,这类蜜罐往往很容易被聪明的攻击者识别出来。它们还缺乏部署灵活性、功能可变性、网络可扩展性和系统可移植性。该项目开发了一种新颖且轻量级的基于蜜罐的恶意内容捕获系统,攻击者无法轻松绕过该系统。然后,蜜罐被用来智能地收集内容,并自动将内容分类为可能的恶意内容和可能的良性内容。其目标是减轻恶意内容的不利影响,净化社交环境,显著提升社交网络的安全性和信任度。研究数据集和软件工具包与更广泛的研究社区共享。研究成果以书籍章节和实践课堂材料的形式转化为教育材料,交付给路易斯安那大学拉斐特分校的学生,也与世界各地的其他大学分享。该项目还邀请了本科生和代表性不足的学生参加,以获得研究经验。该项目开发了一种新颖、轻量级的基于蜜罐的恶意内容嗅探系统,称为弹性蜜罐嗅探器,以克服传统基于蜜罐的解决方案的缺陷。弹性蜜罐嗅探器由两个核心部件组成:(1)实时数据采集和(2)弹性蜜罐检测器。该项目使用现有垃圾邮件数据集上的强大学习技术,识别被发现是垃圾邮件发送者有利可图的目标的用户的特征和行为特征。对于实时数据收集,弹性蜜罐根据学习到的易受攻击的用户配置文件动态部署人工用户帐户作为诱饵,以智能地诱捕攻击者。与传统的蜜罐技术相比,蜜罐技术的主要优势是节点可用性、部署灵活性、功能可变性、网络可扩展性和系统可移植性。弹性蜜罐嗅探器捕获的数据用于设计稳健的分类技术,以区分对对手攻击具有弹性的恶意和良性内容。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Messy States of Wiring: Vulnerabilities in Emerging Personal Payment Systems
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiadong Lou;Xu Yuan;Ning Zhang
  • 通讯作者:
    Jiadong Lou;Xu Yuan;Ning Zhang
Interpretable Minority Synthesis for Imbalanced Classification
  • DOI:
    10.24963/ijcai.2021/350
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi He;Fudong Lin;Xu Yuan;N. Tzeng
  • 通讯作者:
    Yi He;Fudong Lin;Xu Yuan;N. Tzeng
Cascade Variational Auto-Encoder for Hierarchical Disentanglement
Active Learning with Multi-Granular Graph Auto-Encoder
Unsupervised Lifelong Learning with Curricula
  • DOI:
    10.1145/3442381.3449839
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi He;Sheng Chen;Baijun Wu;Xu Yuan;Xindong Wu
  • 通讯作者:
    Yi He;Sheng Chen;Baijun Wu;Xu Yuan;Xindong Wu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu Yuan其他文献

Environmental enforcement and compliance in Pennsylvania's Marcellus shale gas development
宾夕法尼亚州马塞勒斯页岩气开发的环境执法和合规
  • DOI:
    10.1016/j.resconrec.2019.01.006
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo Meiyu;Xu Yuan;Chen Yongqin David
  • 通讯作者:
    Chen Yongqin David
A facile way to prepare anti-fouling and blood-compatible polyethersulfone membrane via blending with heparin-mimicking polyurethanes
通过与仿肝素聚氨酯共混制备防污且血液相容的聚醚砜膜的简便方法
  • DOI:
    10.1016/j.msec.2017.04.123
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Chen;Wang Rui;Xu Yuan;Zhang Man;Yang Fan;Sun Shudong;Zhao Changsheng
  • 通讯作者:
    Zhao Changsheng
Distributed Kalman filter for UWB/INS integrated iedestrian localization under colored measurement noise
用于有色测量噪声下 UWB/INS 集成内行定位的分布式卡尔曼滤波器
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Xu Yuan;Cao Jing;Shmaliy Yuriy S;Zhuang Yuan
  • 通讯作者:
    Zhuang Yuan
Reconsideration of the systematics of Peniculida (Protista, Ciliophora) based on SSU rRNA gene sequences and new morphological features of Marituja and Disematostoma
基于 SSU rRNA 基因序列和 Marituja 和 Disematostoma 新形态特征对 Peniculida(Protista、Ciliophora)系统学的重新思考
  • DOI:
    10.1007/s10750-017-3371-4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xu Yuan;Gao Feng;Fan Xinpeng
  • 通讯作者:
    Fan Xinpeng
3D hierarchical porous sponge-like V(2)O(5 )micro/nano-structures for high-performance Li-ion batteries
用于高性能锂离子电池的3D分层多孔海绵状V(2)O(5)微纳结构
  • DOI:
    10.1016/j.jallcom.2018.06.314
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Liu Pengcheng;Zhu Kongjun;Bian Kan;Xu Yuan;Zhang Fan;Zhang Wei;Zhang Jianhui;Huang Weiqing
  • 通讯作者:
    Huang Weiqing

Xu Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu Yuan', 18)}}的其他基金

CAREER: Holistic Framework for Constructing Dynamic Malicious Knowledge Bases in Social Networks
职业:在社交网络中构建动态恶意知识库的整体框架
  • 批准号:
    2348452
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
  • 批准号:
    2315613
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CAREER: Holistic Framework for Constructing Dynamic Malicious Knowledge Bases in Social Networks
职业:在社交网络中构建动态恶意知识库的整体框架
  • 批准号:
    2146447
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
III: Small: Integrating Casual Discovery and Feature Selection with Streaming Features
III:小:将休闲发现和特征选择与流媒体功能相结合
  • 批准号:
    1652107
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似海外基金

CRII: SaTC: Automated Knowledge Representation for IoT Cybersecurity Regulations
CRII:SaTC:物联网网络安全法规的自动化知识表示
  • 批准号:
    2348147
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SaTC: Privacy vs. Accountability--Usable Deniability and Non-Repudiation for Encrypted Messaging Systems
CRII:SaTC:隐私与责任——加密消息系统的可用否认性和不可否认性
  • 批准号:
    2348181
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Evolving I/O Protocols for Confidential Computing
CRII:SaTC:用于机密计算的不断发展的 I/O 协议
  • 批准号:
    2348130
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
  • 批准号:
    2327427
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Enforcing Expressive Security Policies using Trusted Execution Environments
CRII:SaTC:使用可信执行环境执行表达性安全策略
  • 批准号:
    2348304
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: SaTC: The Right to be Forgotten in Follow-ups of Machine Learning: When Privacy Meets Explanation and Efficiency
CRII:SaTC:机器学习后续中被遗忘的权利:当隐私遇到解释和效率时
  • 批准号:
    2348177
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了