Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning

协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习

基本信息

  • 批准号:
    2315613
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Federated Learning (FL) is a distributed machine learning approach that allows multiple data owners ("clients") to collaboratively train machine learning models that benefit from each owner's data without having to share the data itself. Federated learning can improve privacy and protect restricted data, which makes it an attractive tool in sectors such as healthcare, fintech, and autonomous driving. However, federated learning is subject to critical learning (CL) periods: the initial rounds of training have an outsized impact on models' quality and robustness. CL periods may help federated learning systems improve model quality, if new methods for selecting and weighting contributions from different clients can be developed to address the causes of CL periods. However, they also present opportunities for attackers, who may be able to harness CL periods to launch more precise and impactful attacks. To better understand these opportunities and attacks, this project will conduct a comprehensive analysis of the characteristics and exploitability of CL periods so as to advance the study of the robustness and vulnerability of federated learning. The team will develop datasets, models, algorithms, and system source code and share it with the research community, while the scientific findings will be widely disseminated as research papers, technical reports, book chapters, course materials, and tutorials. Undergraduate students, particularly those from under-represented groups, will be engaged in the proposed research activities. The central goal of this project is to investigate and understand CL periods during the FL training process, exploiting unique properties of CL periods to enhance FL security and robustness while uncovering vulnerabilities that attackers could exploit. To achieve this objective, the project investigates three main themes. The first theme focuses on how to efficiently identify CL periods and related vulnerabilities in a timely manner during FL training. The second theme focuses on how to optimize FL model accuracy with CL periods awareness, focusing on methods for adaptive client selection that are tuned to the causes of CL periods developed in the first theme. The third theme investigates ways to generalize the findings from Theme 1 to other popular FL techniques such as gradient compression, fair aggregation, personalization, and their joint effect, to address system heterogeneity (e.g., communication bandwidth differences, heterogeneous local models, and fairness concerns). Concurrently with the three main themes, the team will also design and develop a robust FL testbed to empirically evaluate the proposed algorithms with real-world models and datasets.This project is jointly funded by Secure and Trustworthy Cyberspace and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
联合学习(FL)是一种分布式机器学习方法,允许多个数据所有者(“客户端”)协作训练机器学习模型,这些模型从每个所有者的数据中受益,而无需共享数据本身。联合学习可以改善隐私并保护受限数据,这使其成为医疗保健,金融科技和自动驾驶等领域的一个有吸引力的工具。然而,联邦学习受到关键学习(CL)时期的影响:最初的几轮训练对模型的质量和鲁棒性有巨大的影响。CL周期可以帮助联邦学习系统提高模型质量,如果可以开发新的方法来选择和加权来自不同客户端的贡献,以解决CL周期的原因。然而,它们也为攻击者提供了机会,他们可能能够利用CL周期来发动更精确和更有影响力的攻击。为了更好地理解这些机会和攻击,本项目将对CL周期的特征和可利用性进行全面分析,以推进联邦学习鲁棒性和脆弱性的研究。该团队将开发数据集,模型,算法和系统源代码,并与研究社区共享,而科学发现将作为研究论文,技术报告,书籍章节,课程材料和教程广泛传播。本科生,特别是那些来自代表性不足的群体,将参与拟议的研究活动。该项目的中心目标是在FL训练过程中调查和了解CL周期,利用CL周期的独特属性来增强FL的安全性和鲁棒性,同时发现攻击者可能利用的漏洞。为实现这一目标,该项目调查了三个主要主题。第一个主题的重点是如何有效地识别CL期间和相关的漏洞,在FL培训及时。第二个主题的重点是如何优化FL模型的准确性与CL周期的意识,专注于自适应客户端选择的方法,调整到CL周期的原因在第一个主题中开发。第三个主题研究如何将主题1的发现推广到其他流行的FL技术,如梯度压缩,公平聚合,个性化及其联合效应,以解决系统异质性(例如,通信带宽差异、异构本地模型和公平性问题)。在讨论三个主题的同时,该研究小组还将设计和开发一个强大的FL测试平台,以便用真实世界的模型和数据集对所提出的算法进行经验性评估。该项目由安全和可信的网络空间和刺激竞争研究的既定计划(EPSCoR)共同资助该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响进行评估,被认为值得支持审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xu Yuan其他文献

Environmental enforcement and compliance in Pennsylvania's Marcellus shale gas development
宾夕法尼亚州马塞勒斯页岩气开发的环境执法和合规
  • DOI:
    10.1016/j.resconrec.2019.01.006
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guo Meiyu;Xu Yuan;Chen Yongqin David
  • 通讯作者:
    Chen Yongqin David
A facile way to prepare anti-fouling and blood-compatible polyethersulfone membrane via blending with heparin-mimicking polyurethanes
通过与仿肝素聚氨酯共混制备防污且血液相容的聚醚砜膜的简便方法
  • DOI:
    10.1016/j.msec.2017.04.123
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang Chen;Wang Rui;Xu Yuan;Zhang Man;Yang Fan;Sun Shudong;Zhao Changsheng
  • 通讯作者:
    Zhao Changsheng
Distributed Kalman filter for UWB/INS integrated iedestrian localization under colored measurement noise
用于有色测量噪声下 UWB/INS 集成内行定位的分布式卡尔曼滤波器
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Xu Yuan;Cao Jing;Shmaliy Yuriy S;Zhuang Yuan
  • 通讯作者:
    Zhuang Yuan
Reconsideration of the systematics of Peniculida (Protista, Ciliophora) based on SSU rRNA gene sequences and new morphological features of Marituja and Disematostoma
基于 SSU rRNA 基因序列和 Marituja 和 Disematostoma 新形态特征对 Peniculida(Protista、Ciliophora)系统学的重新思考
  • DOI:
    10.1007/s10750-017-3371-4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xu Yuan;Gao Feng;Fan Xinpeng
  • 通讯作者:
    Fan Xinpeng
3D hierarchical porous sponge-like V(2)O(5 )micro/nano-structures for high-performance Li-ion batteries
用于高性能锂离子电池的3D分层多孔海绵状V(2)O(5)微纳结构
  • DOI:
    10.1016/j.jallcom.2018.06.314
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Liu Pengcheng;Zhu Kongjun;Bian Kan;Xu Yuan;Zhang Fan;Zhang Wei;Zhang Jianhui;Huang Weiqing
  • 通讯作者:
    Huang Weiqing

Xu Yuan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xu Yuan', 18)}}的其他基金

CAREER: Holistic Framework for Constructing Dynamic Malicious Knowledge Bases in Social Networks
职业:在社交网络中构建动态恶意知识库的整体框架
  • 批准号:
    2348452
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
CAREER: Holistic Framework for Constructing Dynamic Malicious Knowledge Bases in Social Networks
职业:在社交网络中构建动态恶意知识库的整体框架
  • 批准号:
    2146447
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Empowering Elastic-honeypot as Real-time Malicious Content Sniffers for Social Networks
CRII:SaTC:使弹性蜜罐成为社交网络的实时恶意内容嗅探器
  • 批准号:
    1948374
  • 财政年份:
    2020
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
III: Small: Integrating Casual Discovery and Feature Selection with Streaming Features
III:小:将休闲发现和特征选择与流媒体功能相结合
  • 批准号:
    1652107
  • 财政年份:
    2016
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330941
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
  • 批准号:
    2413046
  • 财政年份:
    2024
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
  • 批准号:
    2312057
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Investigation of Naming Space Hijacking Threat and Its Defense
协作研究:SaTC:核心:小型:命名空间劫持威胁及其防御的调查
  • 批准号:
    2317830
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards a Privacy-Preserving Framework for Research on Private, Encrypted Social Networks
协作研究:SaTC:核心:小型:针对私有加密社交网络研究的隐私保护框架
  • 批准号:
    2318843
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了