Singularities in Geometric Variational Problems
几何变分问题中的奇点
基本信息
- 批准号:1951070
- 负责人:
- 金额:$ 14.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of geometric variational problems -- the `problem' here means finding an object that minimizes some geometrically-defined notion of energy -- is one of the oldest and most fascinating topics in mathematics, dating back at least to the first "Nobel prize for mathematics" (the Fields Medal) awarded to J. Douglas in 1932 for his advances in this field. Solutions of geometric variational problems can describe equilibrium configurations of physical systems or socio-economical models -- situations where we expect real-world systems to naturally reach a minimum-energy configuration. As well, in the mathematical field of topology -- where objects are regarded as equivalent no matter how they are bent or stretched -- the solutions to variational problems can provide preferred representatives within such large equivalence classes. The investigation of geometric variational problems is thus of fundamental importance both in pure mathematics and in applications. This project is intended to significantly improve our knowledge on geometric variational problems by addressing a series of old and new questions, whose answer will require either the development of new techniques and ideas, or devising new approaches to known methods. This will be done through the collaborations with many leading experts in the field.This project intends to put a step forward in the study of geometric variational problems by dealing with the following lines of research. Inspired by work of L. Simon, the investigator proposes to study the optimal regularity of the singular set for minimal surfaces close to special classes of minimal cones and to construct new examples of singular area minimizing hypersurfaces. In the free-boundary setting, following ideas of Caffarelli and Weiss, the investigator proposes to study the regularity of the singular set of solutions to the Alt-Caffarelli functional and the thin-obstacle problem. Finally, in a joint project with Y. Liokumovich, the investigator proposes the problem of constructing smooth minimal hypersurfaces for a generic set of metrics on a compact manifold, generalizing works of Hardt-Simon and N. Smale. These problems are of fundamental nature, as they could lead to extensions of theorems such as Colding-Minicozzi's proof of the finite time extinction of the Ricci flow, Marques-Neves' proof of Willmore's conjecture, or Schoen-Yau's proof of the positive mass theorem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何变分问题的研究--这里的“问题”指的是找到一个能最小化某些几何定义的能量概念的物体--是数学中最古老和最吸引人的话题之一,至少可以追溯到1932年授予J·道格拉斯的第一个“诺贝尔数学奖”(菲尔兹奖),以表彰他在这一领域的进步。几何变分问题的解决方案可以描述物理系统或社会经济模型的平衡配置--我们期望现实世界的系统自然达到最低能量配置的情况。同样,在拓扑学的数学领域--其中对象无论如何弯曲或拉伸都被认为是等价的--变分问题的解决方案可以在如此大的等价类中提供优先的代表。因此,几何变分问题的研究在纯数学和应用中都是非常重要的。这个项目的目的是通过解决一系列新旧问题来显著提高我们对几何变分问题的认识,这些问题的答案要么需要发展新的技术和想法,要么需要设计新的方法来解决已知的方法。这将通过与该领域许多顶尖专家的合作来完成。本项目旨在通过以下几个方面的研究工作,推动几何变分问题的研究向前迈进一步。受L.Simon工作的启发,研究者建议研究极小曲面在特殊的极小锥类附近奇异集的最优正则性,并构造奇异面积最小化超曲面的新例子。在自由边界条件下,遵循Caffarelli和Weiss的思想,研究Alt-Caffarelli泛函和薄障碍问题奇异解集的正则性。最后,在与Y.Liokumovich的一个联合项目中,研究人员提出了为紧致流形上的一般度量集构造光滑极小超曲面的问题,推广了Hardt-Simon和N.Smer的工作。这些问题具有根本性质,因为它们可能导致定理的扩展,如Colding-Minicozzi关于Ricci流有限时间灭绝的证明,Marques-Neves对Willmore猜想的证明,或Schoen-Yau对正质量定理的证明。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniqueness of the blowup at isolated singularities for the Alt–Caffarelli functional
Alt-Caffarelli 泛函在孤立奇点处爆炸的唯一性
- DOI:10.1215/00127094-2019-0077
- 发表时间:2020
- 期刊:
- 影响因子:2.5
- 作者:Engelstein, Max;Spolaor, Luca;Velichkov, Bozhidar
- 通讯作者:Velichkov, Bozhidar
Free boundary regularity for a multiphase shape optimization problem
多相形状优化问题的自由边界正则性
- DOI:10.1080/03605302.2019.1658773
- 发表时间:2020
- 期刊:
- 影响因子:1.9
- 作者:Spolaor, Luca;Trey, Baptiste;Velichkov, Bozhidar
- 通讯作者:Velichkov, Bozhidar
On the asymptotic behavior of the solutions to parabolic variational inequalities
关于抛物变分不等式解的渐近行为
- DOI:10.1515/crelle-2019-0041
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Spolaor, Luca;Colombo, Maria;Velichkov, Bozhidar
- 通讯作者:Velichkov, Bozhidar
The Riemannian quantitative isoperimetric inequality
黎曼定量等周不等式
- DOI:10.4171/jems/1223
- 发表时间:2022
- 期刊:
- 影响因子:2.6
- 作者:Chodosh, Otis;Engelstein, Max;Spolaor, Luca
- 通讯作者:Spolaor, Luca
The singular set of minimal surfaces near polyhedral cones
多面锥体附近的奇异最小曲面集
- DOI:10.4310/jdg/1649953512
- 发表时间:2022
- 期刊:
- 影响因子:2.5
- 作者:Colombo, Maria;Edelen, Nick;Spolaor, Luca
- 通讯作者:Spolaor, Luca
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luca Spolaor其他文献
Interior Regularity for Two-Dimensional Stationary Q-Valued Maps
- DOI:
10.1007/s00205-024-02011-w - 发表时间:
2024-07-22 - 期刊:
- 影响因子:2.400
- 作者:
Jonas Hirsch;Luca Spolaor - 通讯作者:
Luca Spolaor
On the number of singular points for planar multivalued harmonic functions
- DOI:
10.1007/s00229-017-0920-0 - 发表时间:
2017-02-20 - 期刊:
- 影响因子:0.600
- 作者:
Francesco Ghiraldin;Luca Spolaor - 通讯作者:
Luca Spolaor
Luca Spolaor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luca Spolaor', 18)}}的其他基金
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
- 批准号:
2044954 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Singularities in Geometric Variational Problems
几何变分问题中的奇点
- 批准号:
1810645 - 财政年份:2018
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Discovery Early Career Researcher Award
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Discovery Grants Program - Individual
CAREER:New Development in Geometric Variational Theory
事业:几何变分理论的新进展
- 批准号:
2243149 - 财政年份:2022
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Geometric Variational Problems and Scalar Curvature
几何变分问题和标量曲率
- 批准号:
2202343 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
Standard Grant
Geometric Variational Problems and Rearrangement Inequalities
几何变分问题和重排不等式
- 批准号:
RGPIN-2020-06826 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems
职业:一些几何变分问题中奇异集的精细结构
- 批准号:
2044954 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant
Regularity and Singularity Issues in Geometric Variational Problems
几何变分问题中的正则性和奇异性问题
- 批准号:
2055686 - 财政年份:2021
- 资助金额:
$ 14.99万 - 项目类别:
Continuing Grant