CAREER: Fine Structure of the Singular Set in Some Geometric Variational Problems

职业:一些几何变分问题中奇异集的精细结构

基本信息

  • 批准号:
    2044954
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

The study of Geometric Variational problems is one of the oldest and most fascinating topics in Mathematics. Solutions to these problems describe equilibrium configurations of physical systems and provide canonical tools to study the geometry and topology of manifolds. Physically this can be observed for instance when three soap bubbles merge on a common line forming a corner, or studying the structure of the transition region of an iceberg melting into water. The goal of this project is to investigate the structure of such singular solutions, which is often the major stumbling block in their application to Geometry, Topology and Physics. Central to the project is an integrated plan of educational activities. This consists in the organization of a REU program and a winter Graduate School at UCSD on recent trends in Geometric Analysis. The PI will invite experts in the field for five days stays at UCSD to increase the overall activity of the seminar, expose graduate students to the most interesting results and open questions, and encourage collaborations.This project will focus on two of the most classical and influential Geometric Variational problems: Minimal Surfaces and Free-Boundary problems. Minimal surfaces provides canonical objects to study the topology of manifolds and are a good model for soap films and partition problems. Free-Boundary problems are fundamental in modeling a wide range of physical phenomena, such as phase transition (e.g. the melting of ice into water), flows with jets and cavities, shape optimization type problems and the pricing of American options. Solutions to geometric variational problems are known to exhibit singularities. In the context of Minimal Surfaces, the PI will investigate the regularity of the singular set for Area Minimizing hypersurfaces and for surfaces in any codimension, both in the integer and modulo p cases. For Free-Boundary problems, the focus will be on the structure of the set of so-called branching points for the Two-Phase problem and the Vectorial Alt-Caffarelli problem, and its relation with the set of points of high frequency of solutions to the Signorini problem. This will be achieved refining some new techniques recently introduced by the PI and his collaborators, and by developing new ones, which will have an impact in many other problems in Geometric Analysis. One of the major goals of the REU program and the winter Graduate School is to introduce undergraduate and graduate students to these problems and techniques.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何变分问题的研究是数学中最古老和最迷人的课题之一。这些问题的解决方案描述了物理系统的平衡构型,并为研究流形的几何和拓扑提供了规范的工具。这在物理上是可以观察到的,例如,当三个肥皂泡合并在一条共同的线上形成一个角,或者研究冰山融化成水的过渡区域的结构。该项目的目标是研究这些奇异解的结构,这通常是它们在几何、拓扑和物理应用中的主要障碍。该项目的核心是教育活动的综合计划。这包括组织一个REU项目和一个冬季研究生院在UCSD研究几何分析的最新趋势。PI将邀请该领域的专家在加州大学圣地亚哥分校停留五天,以增加研讨会的整体活动,让研究生接触最有趣的结果和开放的问题,并鼓励合作。这个项目将集中在两个最经典和最有影响力的几何变分问题:最小曲面和自由边界问题。极小曲面提供了研究流形拓扑的规范对象,是研究肥皂膜和划分问题的良好模型。自由边界问题是建模各种物理现象的基础,如相变(如冰融化成水),射流和空腔流动,形状优化类型问题和美式期权定价。众所周知,几何变分问题的解具有奇异性。在极小曲面的背景下,PI将研究极小面积超曲面和任意余维曲面的奇异集的正则性,包括整数和模p的情况。对于自由边界问题,重点将放在两相问题和向量al - caffarelli问题的分支点集的结构,以及它与Signorini问题高频解的点集的关系上。这将通过改进PI和他的合作者最近引入的一些新技术来实现,并通过开发新的技术来实现,这些新技术将对几何分析中的许多其他问题产生影响。REU项目和冬季研究生院的主要目标之一是向本科生和研究生介绍这些问题和技术。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Monotonicity Formulas in the Calculus of Variation
变分法中的单调性公式
Singular behavior and generic regularity of min-max minimal hypersurfaces
最小-最大最小超曲面的奇异行为和一般规律
  • DOI:
    10.15781/j4aj-kd66
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chodosh, Otis;Liokumovich, Yevgeny;Spolaor, Luca
  • 通讯作者:
    Spolaor, Luca
The Riemannian quantitative isoperimetric inequality
黎曼定量等周不等式
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luca Spolaor其他文献

Interior Regularity for Two-Dimensional Stationary Q-Valued Maps
On the number of singular points for planar multivalued harmonic functions
  • DOI:
    10.1007/s00229-017-0920-0
  • 发表时间:
    2017-02-20
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Francesco Ghiraldin;Luca Spolaor
  • 通讯作者:
    Luca Spolaor

Luca Spolaor的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luca Spolaor', 18)}}的其他基金

Singularities in Geometric Variational Problems
几何变分问题中的奇点
  • 批准号:
    1951070
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Singularities in Geometric Variational Problems
几何变分问题中的奇点
  • 批准号:
    1810645
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
  • 批准号:
    2244690
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Integrating Perception and Communication: The Function of Acoustic Fine Structure in Natural Zebra Finch Communication
感知与交流的整合:声学精细结构在天然斑胸草雀交流中的作用
  • 批准号:
    2321788
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Solar electron neutrino detection using a novel detector combining the superconducting and fine structure formation technique
使用结合超导和精细结构形成技术的新型探测器进行太阳电子中微子探测
  • 批准号:
    23H01184
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MRI: Acquisition of a Lab-Scale Instrument for X-ray Absorption Fine Structure
MRI:购买用于 X 射线吸收精细结构的实验室规模仪器
  • 批准号:
    2215769
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Investigation of Structure-Property Relationships in Canted Antiferromagnetic Molecular Conductors by Fine Control of Intermolecular Interactions
通过分子间相互作用的精细控制研究倾斜反铁磁分子导体的结构-性能关系
  • 批准号:
    23K13722
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fine Structure in Hamiltonian Systems
哈密​​顿系统中的精细结构
  • 批准号:
    2307987
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Fine structure and MRI image of the neurofluid drainage system in the human cerebral meninges, spinal nerve sheath
人体脑膜、脊神经鞘神经液体引流系统的精细结构及MRI图像
  • 批准号:
    22K09289
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fine-scale auroral structure: Causes and effects
精细尺度的极光结构:原因和影响
  • 批准号:
    NE/V012436/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
CRITICAL EARLY DKIST SCIENCE: FINE STRUCTURE IN UNI-POLAR MAGNETIC FIELDS
关键的早期 DKIST 科学:单极磁场中的精细结构
  • 批准号:
    2108249
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Fine-scale auroral structure: Causes and effects
精细尺度的极光结构:原因和影响
  • 批准号:
    NE/V012541/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了