Singularities of solutions to geometric variational problems

几何变分问题解的奇异性

基本信息

项目摘要

DMS-0406447Title: Singularities of solutions to geometric variational problemsPIs: Gang Tian and Neshan Wickramasekera, M.I.T.ABSTRACT The primary focus of this proposal is to study the localstructure of weak limits of (smooth as well as singular) immersedstable minimal hypersurfaces of arbitrary dimension, withthe ultimate goal of extending the partial regularitytheory of embedded stable minimal hypersurfaces, developedin 1981 by R. Schoen and L. Simon. Relaxing the embeddedness hypothesisallows the presence of additional singularities, for instance pointswhere the tangent cones are hyperplanes with multiplicity greater thanone. It is proposed to investigate the nature of these singularities,with the aim of obtaining information concerning the size and thestructure of these singularities, possible uniqueness of their tangentcones as well as the local nature of the hypersurface near the singularities.The second project proposed is a study of the effect of certaintopological and analytic constraints (on the targetmanifold) on the regularity propeties of the singular sets of energyminimizing harmonic maps between Riemannian manifolds. The regularity theory of minimal surfaces and harmonic maps has a veryrich history and the results and ideas developed in these areas haveprofoundly influenced several other fields of contemporary research inmathematics and physics,such as Yang-Mills fields, free boundary problems, curvature flows andgeneral relativity.Obtaining a good structural description near singularities turns out to behighly desirable in many problems in pure and applied mathematics, and anynew advances in minimal surface theory in this regard will likely havean impact on these other fields.
DMS-0406447题目:几何变分问题解的奇异性PI:Gang Tian和Neshan Wickramasekera,M.I.T.摘要本文的主要目的是研究任意维的(光滑的和奇异的)嵌入稳定极小超曲面的弱极限的局部结构,最终目的是推广R. Schoen和L.西蒙放松嵌入性假设允许存在额外的奇点,例如切锥是重数大于1的超平面的点。建议研究这些奇点的性质,目的是获得关于这些奇点的大小和结构的信息,第二个方案是研究某些拓扑约束和解析约束的影响(在目标流形上)关于黎曼流形间能量极小调和映射奇异集的正则性. 极小曲面和调和映射的正则性理论有着非常丰富的历史,在这些领域中发展起来的结果和思想深刻地影响了当代数学和物理研究的其他几个领域,如Yang-Mills场、自由边界问题、曲率流和广义相对论。在许多纯数学和应用数学问题中,获得奇点附近的良好结构描述是非常必要的,在这方面,极小曲面理论的任何新进展都可能对其他领域产生影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neshan Wickramasekera其他文献

Motion of a vortex filament with axial flow in the half space
涡丝在半空间内的轴流运动
A general regularity theory for stable codimension 1 integral varifolds
  • DOI:
    10.4007/annals.2014.179.3.2
  • 发表时间:
    2009-11
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Neshan Wickramasekera
  • 通讯作者:
    Neshan Wickramasekera
A Structure Theory for Stable Codimension 1 Integral Varifolds with Applications to Area Minimising Hypersurfaces mod p
稳定余维1积分变体的结构理论及其在面积最小化超曲面mod p中的应用
  • DOI:
    10.1090/jams/1032
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Paul Minter;Neshan Wickramasekera
  • 通讯作者:
    Neshan Wickramasekera
A regularity and compactness theory for immersed stable minimal hypersurfaces of multiplicity at most 2
  • DOI:
    10.4310/jdg/1217361067
  • 发表时间:
    2007-10
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Neshan Wickramasekera
  • 通讯作者:
    Neshan Wickramasekera
A sharp strong maximum principle and a sharp unique continuation theorem for singular minimal hypersurfaces

Neshan Wickramasekera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neshan Wickramasekera', 18)}}的其他基金

Regularity properties and singularity structure of solutions to linear and non-linear variational problems
线性和非线性变分问题解的正则性和奇点结构
  • 批准号:
    0707005
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Singularities of solutions to geometric variational problems
几何变分问题解的奇异性
  • 批准号:
    0601265
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

无穷维哈密顿系统的KAM理论
  • 批准号:
    10771098
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
  • 批准号:
    2349575
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
  • 批准号:
    23K03175
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Green operations with Geometric altitude, Advanced separation and Route charging Solutions (Green-GEAR)
几何高度、先进分离和路线收费解决方案的绿色运营(Green-GEAR)
  • 批准号:
    10091330
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Green operations with Geometric altitude, Advanced separation and Route charging Solutions
几何高度、先进分离和路线收费解决方案的绿色运营
  • 批准号:
    10087714
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Non-equilibrium dynamics of integrable quantum systems: An algebro-geometric approach to quantum solitons with exact numerical solutions
可积量子系统的非平衡动力学:具有精确数值解的量子孤子的代数几何方法
  • 批准号:
    21K03398
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Methods for Singular Solutions to Nonlinear Hyperbolic Partial Differential Equations
非线性双曲偏微分方程奇异解的几何方法
  • 批准号:
    2054184
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Ancient Solutions to Geometric Flows
几何流的古代解决方案
  • 批准号:
    2105026
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Ancient Solutions and Singularities in Geometric Flows
几何流中的古代解和奇点
  • 批准号:
    2105508
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
  • 批准号:
    2147439
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Study of properties of solutions to geometric higher order variational problems
几何高阶变分问题解的性质研究
  • 批准号:
    20K14341
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了