Enhancing High-resolution Terrain Data Model for Improving the Delineation of Multi-scale Hydrological Connectivity

增强高分辨率地形数据模型以改善多尺度水文连通性的勾画

基本信息

  • 批准号:
    1951741
  • 负责人:
  • 金额:
    $ 17.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The project is to create a new geospatial and hydrological modeling approach that improves the identification of rivers and streams using high-resolution digital elevation models (HRDEMs). Accurate identification of these river and stream networks is necessary for monitoring environmental process such as the transport of nutrients and aquatic species. The results will create an intelligent hydrological model by combining methods in geographic information sciences, artificial intelligence and cyberinfrastructure that will enable multi-scale analysis of river and stream networks. The model, algorithms, and datasets generated from this project will be freely available to the public and benefit a broad scope of natural resources management activities, such as watershed monitoring, wetland conservation, and aquatic species protection. The results of this work will be incorporated into educational curriculums and disseminated to the broader educational community.There is a critical need for datasets and modeling approaches that can be used to generate hydrologically corrected HRDEMs and delineate hydrologic features like wetlands, road culverts and bridges at a fine scale. To improve the modeling accuracy, this project will develop a geospatial artificial intelligence-hydrological modeling framework that is compatible with HRDEMs. A deep learning model and an image dataset of drainage crossing locations will be developed to identify the locations of hydraulic drainage structures as virtual flow barriers. The effects of hydraulic drainage structures, HRDEM resolutions, and flow direction algorithms on the delineated hydrologic features and their connectivity will be assessed via controlled experiments for an optimal combination. The model will be implemented on high-performance computing clusters to speed up the geocomputation. This project will substantially advance the state-of-the-art of terrain-based hydrologic modeling integrating methods in geographic information science, artificial intelligence, and cyberinfrastructure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在创建一种新的地理空间和水文建模方法,使用高分辨率数字高程模型(HRDEM)改进河流和溪流的识别。这些河流和溪流网络的准确识别是必要的监测环境过程,如营养物质和水生物种的传输。研究结果将通过结合地理信息科学、人工智能和网络基础设施的方法,创建一个智能水文模型,从而实现对河流和溪流网络的多尺度分析。该项目生成的模型、算法和数据集将免费提供给公众,并有利于广泛的自然资源管理活动,如流域监测、湿地保护和水生物种保护。这项工作的结果将被纳入教育大纲,并传播到更广泛的教育界。有一个数据集和建模方法,可用于生成水文校正HRDEM和描绘水文功能,如湿地,公路涵洞和桥梁在一个很好的比例是一个迫切的需要。为了提高建模精度,本项目将开发一个与HRDEM兼容的地理空间人工智能水文建模框架。将开发一个深度学习模型和一个排水交叉位置的图像数据集,以识别作为虚拟流动障碍物的水力排水结构的位置。水力排水结构,HRDEM分辨率和流向算法上划定的水文特征和它们的连通性的影响将通过控制实验进行评估,以获得最佳组合。该模型将在高性能计算集群上实现,以加快地理计算。该项目将极大地推进基于地形的水文建模的最新技术,将地理信息科学、人工智能和网络基础设施的方法集成在一起。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accuracy-Constrained Efficiency Optimization and GPU Profiling of CNN Inference for Detecting Drainage Crossing Locations
Pareto Optimization of CNN Models via Hardware-Aware Neural Architecture Search for Drainage Crossing Classification on Resource-Limited Devices
Assessing the impacts of anthropogenic drainage structures on hydrologic connectivity using high‐resolution digital elevation models
  • DOI:
    10.1111/tgis.12832
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    S. Bhadra;Ruopu Li;Di Wu;Guangxing Wang;Banafsheh Rekabdar
  • 通讯作者:
    S. Bhadra;Ruopu Li;Di Wu;Guangxing Wang;Banafsheh Rekabdar
Classification and Feature Extraction for Hydraulic Structures Data Using Advanced CNN Architectures
使用先进的 CNN 架构对水工结构数据进行分类和特征提取
Classification of drainage crossings on high-resolution digital elevation models: A deep learning approach
  • DOI:
    10.1080/15481603.2023.2230706
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Di Wu;Ruopu Li;Banafsheh Rekabdar;Claire Talbert;Michael Edidem;Guangxing Wang
  • 通讯作者:
    Di Wu;Ruopu Li;Banafsheh Rekabdar;Claire Talbert;Michael Edidem;Guangxing Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ruopu Li其他文献

A Geospatial Approach for Assessing Groundwater Vulnerability to Nitrate Contamination in Agricultural Settings
  • DOI:
    10.1007/s11270-014-2214-4
  • 发表时间:
    2014-11-19
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    Ruopu Li;James W. Merchant;Xun-Hong Chen
  • 通讯作者:
    Xun-Hong Chen
GeoAI-based drainage crossing detection for elevation-derived hydrographic mapping
基于地理人工智能的排水穿越检测用于高程衍生水文制图
  • DOI:
    10.1016/j.envsoft.2025.106338
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Michael Edidem;Ruopu Li;Di Wu;Banafsheh Rekabdar;Guangxing Wang
  • 通讯作者:
    Guangxing Wang
Post-disaster assessment of northeastern coastal region for the 2011 Sendai Earthquake and tsunami
2011年仙台地震海啸东北沿海地区灾后评估
Electrochemical dual α,β-C(spsup3/sup)–H functionalization of cyclic emN/em-aryl amines
环状烯丙基胺的电化学双α,β-C(sp3)-H 官能化
  • DOI:
    10.1039/d3gc00344b
  • 发表时间:
    2023-04-03
  • 期刊:
  • 影响因子:
    9.200
  • 作者:
    Tian Feng;Zile Zhu;Dongmei Zhang;Siyi Wang;Ruopu Li;Zhaolin Zhu;Xinxing Zhang;Youai Qiu
  • 通讯作者:
    Youai Qiu
Monitoring Algal Blooms in Small Lakes Using Drones: A Case Study in Southern Illinois
使用无人机监测小湖泊中的藻华:伊利诺伊州南部的案例研究

Ruopu Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ruopu Li', 18)}}的其他基金

Converging Earth Science and Sustainability Education and Experience to Prepare Next-Generation Geoscientists
融合地球科学和可持续发展教育和经验,培养下一代地球科学家
  • 批准号:
    2225490
  • 财政年份:
    2023
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Standard Grant
EAGER: SAI: Understanding and Bridging the Smart Technology Infrastructure Divide in Rural America
EAGER:SAI:了解并弥合美国农村地区的智能技术基础设施鸿沟
  • 批准号:
    2122092
  • 财政年份:
    2021
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Standard Grant

相似国自然基金

用于小尺寸管道高分辨成像荧光聚合物点的构建、成像机制及应用研究
  • 批准号:
    82372015
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
发展双模态超分辨率全景成像技术,描绘自噬和迁移性胞吐过程中的细胞器互作网络
  • 批准号:
    92054301
  • 批准年份:
    2020
  • 资助金额:
    900.0 万元
  • 项目类别:
    重大研究计划
基于Resolution算法的交互时态逻辑自动验证机
  • 批准号:
    61303018
  • 批准年份:
    2013
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
高计数率环境下MRPC特性研究
  • 批准号:
    10875120
  • 批准年份:
    2008
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: A Comprehensive Approach for Generating, Sharing, Searching, and Using High-Resolution Terrain Parameters
EAGER:生成、共享、搜索和使用高分辨率地形参数的综合方法
  • 批准号:
    2334945
  • 财政年份:
    2023
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Standard Grant
Terrain analysis of world mountains using high resolution DEMs and its application to geography education
利用高分辨率DEM进行世界山脉地形分析及其在地理教育中的应用
  • 批准号:
    18K01119
  • 财政年份:
    2018
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ancient river systems on Mars: geological studies using high-resolution images and Digital Terrain Models
火星上的古代河流系统:使用高分辨率图像和数字地形模型进行地质研究
  • 批准号:
    1947505
  • 财政年份:
    2017
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Studentship
Development of automated terrain classification for global disaster prevention using medium to high resolution DEM
使用中高分辨率 DEM 开发用于全球防灾的自动地形分类
  • 批准号:
    15K01176
  • 财政年份:
    2015
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Automated, High Resolution Terrain Generation for XSEDE
XSEDE 自动生成高分辨率地形
  • 批准号:
    1542736
  • 财政年份:
    2015
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Standard Grant
High resolution modelling of stable boundary layers over complex terrain
复杂地形稳定边界层的高分辨率建模
  • 批准号:
    NE/I007679/1
  • 财政年份:
    2011
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Research Grant
High resolution airborne radar for environmental research: soil moisture, vegetation, salinity and terrain mapping
用于环境研究的高分辨率机载雷达:土壤湿度、植被、盐度和地形测绘
  • 批准号:
    LE0882509
  • 财政年份:
    2008
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Footprint model development and validation for homogeneous and inhomogeneous terrain using high resolution large eddy simulation
使用高分辨率大涡模拟开发和验证均匀和非均匀地形的足迹模型
  • 批准号:
    5452153
  • 财政年份:
    2005
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Research Grants
Footprint model development and validation for homogeneous and inhomogeneous terrain using high resolution large eddy simulation
使用高分辨率大涡模拟开发和验证均匀和非均匀地形的足迹模型
  • 批准号:
    5452157
  • 财政年份:
    2005
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Research Grants
SBIR Phase I: Rapid Generation of High-Resolution, Geographically Registered, 3D Terrain Models
SBIR 第一阶段:快速生成高分辨率、地理注册的 3D 地形模型
  • 批准号:
    0232361
  • 财政年份:
    2003
  • 资助金额:
    $ 17.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了